Part Number Hot Search : 
TF308B 68HC70 A8909CLB ICS1892 8F320 KRA772E STTH106 MAX4636
Product Description
Full Text Search
 

To Download MCIMX31LVKN5 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? freescale semiconductor, inc., 20 05, 2006, 2007. all rights reserved. freescale semiconductor data sheet: advance information this document contains information on a new product. specificatio ns and information herein are su bject to change without notice . document number: mcimx31 rev. 2.3, 03/2007 mcimx31 and mcimx31l package information plastic package case 1581 14 x 14 mm, 0.5 mm pitch ordering information see ta bl e 1 on page 3 for ordering information. 1 introduction the i.mx31 (mcimx31) a nd i.mx31l (mcimx31l) are multimedia applications pr ocessors that represent the next step in low-power, hi gh-performance application processors. unless otherwise specified, the material in this data sheet is applicable to both the i.mx31 and i.mx31l processors. the i.mx31l does not include a graphics processing unit (gpu). based on an arm11 ? microprocessor core, the i.mx31 and i.mx31l provide the performance with low power consumption required by modern digital devices such as: ? feature-rich cellular phones ? portable media player s and mobile gaming machines ? personal digital assistants (pdas) and wireless pdas ? portable dvd players ? digital cameras the i.mx31 and i.mx31l take advantage of the arm1136jf-s ? core running at overdrive speeds of 532 mhz, and are optimized for minimal power i.mx31 and i.mx31l multimedia applications processors contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.2 ordering information . . . . . . . . . . . . . . . . . . . .3 1.3 block diagram . . . . . . . . . . . . . . . . . . . . . . . . .4 2 functional description and application information 4 2.1 arm11 microprocessor core . . . . . . . . . . . . . .4 2.2 module inventory . . . . . . . . . . . . . . . . . . . . . . .6 3 signal descriptions . . . . . . . . . . . . . . . . . . . . . . .9 4 electrical characteristics . . . . . . . . . . . . . . . . .10 4.1 i.mx31 and i.mx31l chip-level conditions . .10 4.2 supply power-up/power-down requirements and restrictions 14 4.3 module-level electrical specifications . . . . . .16 5 package information and pinout . . . . . . . . . . .98 5.1 mapbga production package . . . . . . . . . . . .98 6 product documentation . . . . . . . . . . . . . . . . . .105 6.1 revision history . . . . . . . . . . . . . . . . . . . . . .106
i.mx31/i.mx31l advance information, rev. 2.3 2 freescale semiconductor introduction consumption using the most advanced techniques for power saving (dptc, dvfs, power gating, clock gating). with 90 nm technology and dual-vt transi stors (two threshold voltages), the i.mx31 and i.mx31l provide the optimal performanc e versus leakage current balance. the performance of the i.mx31 a nd i.mx31l is boosted by a multi-le vel cache system, and features peripheral devices such as an mpeg-4 hardwa re encoder (vga, 30 fps), an autonomous image processing unit, a vector floating point (vfp11) co-processor, and a risc-based sdma controller. the i.mx31 and i.mx31l support connections to various types of external me mories, such as ddr, nand flash, nor flash, sdram, and sram. the i.mx 31 and i.mx31l can be connected to a variety of external devices using technol ogy, such as high-speed usb2.0 ot g, ata, mmc/sdio, and compact flash. 1.1 features the i.mx31 and i.mx31l are designed for the high-tier and mid-tier sm artphone markets. they provide low-power solutions for high-performance demandi ng multimedia and graphics applications. the i.mx31 and i.mx31l are built around the arm11 mcu core and implemented in the 90 nm technology. the systems include the following features: ? multimedia and floating-point hardware acceleration supporting: ? mpeg-4 real-time encode of up to vga at 30 fps ? mpeg-4 real-time video post-proc essing of up to vga at 30 fps ? video conference call of up to qcif -30 fps (decoder in software), 128 kbps ? video streaming (playback) of up to vga-30 fps, 384 kbps ? 3d graphics and other applicat ions acceleration with the arm ? tightly-coupled vector floating point co-processor ? on-the-fly video processing that reduces system memory load (for example, the power-efficient viewfinder application with no invol vement of either the memory system or the arm cpu) ? advanced power management ? dynamic voltage and frequency scaling ? multiple clock and power domains ? independent gating of power domains ? multiple communication and expansion ports includi ng a fast parallel interface to an external graphic accelerator (supporting majo r graphic accelerator vendors)
introduction i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 3 1.2 ordering information table 1 provides the ordering informati on for the i.mx31 and i.mx31l. table 1. ordering information part number silicon revision 1, 2, 3 1 information on reading the silicon revision register can be found in the ic identification (iim) chapter of the reference manua l, document order number mcimx31rm. 2 errata and fix information of the various mask sets can be found in the errata, document order number mcimx31ce. 3 changes in output buffer characteristics can be found in the i/o setting exceptions and special pad descriptions table in chapter 4 of the reference manual, document order number mcimx31rm. device marking operating temperature range ( c) package 4 4 case 1581 is rohs compliant, lead-free, msl = 3, and solders at 260 c. mcimx31vkn5 1.15 2l38w and 3l38w 0 to 70 14 x 14 mm, 0.5 mm pitch, mapbga-457, case 1581 MCIMX31LVKN5 1.15 2l38w and 3l38w 0 to 70 mcimx31vkn5b 1.2 m45g 0 to 70 MCIMX31LVKN5b 1.2 m45g 0 to 70
i.mx31/i.mx31l advance information, rev. 2.3 4 freescale semiconductor functional description and application information 1.3 block diagram figure 1 shows the i.mx31 and i.mx31l simp lified interface block diagram. figure 1. i.mx31/i.mx31l simplified interface block diagram 2 functional description and application information 2.1 arm11 microprocessor core the cpu of the i.mx31 and i.mx31l is the arm1136j f-s core based on the arm v6 architecture. it supports the arm thumb ? instruction sets, features jazelle ? technology (which enables direct execution of java byte codes), and a range of simd dsp instructions that operate on 16-bit or 8-bit data values in 32-bit registers. the arm1136jf-s processor core features: ? integer unit with integral embeddedice ? logic ? eight-stage pipeline ? branch prediction with return stack ? low-interrupt latency external memory ap peripherals sram, psram, sdram nand flash, smartmedia gpu * camera mpeg-4 baseband sd card fast irda usb image processing unit (ipu) parallel sensor (2) serial lcd timers audmux ssi (2) uart (5) gpt pwm epit (2) rtc gpio wdog 1-wire ? cspi (3) i 2 c (3) fir kpp ccm arm11 tm platform i-cache d-cache l2-cache rompatch vfp sdma usb-otg iim expansion sim ata pcmcia/cf mem stick (2) sdhc (2) usb host (2) * gpu unavailable for i.mx31l inversion and rotation camera interface blending display/tv ctl pre & post processing display (2) nor flash ddr wlan bluetooth interface (emi) power management ic pc card pc card host/device mouse keyboard ta m p e r detection serial eprom video encoder 8 x 8 keypad gps ata hard drive arm1136jf-s tm max memory internal security rnga scc rtic debug ect sjc etm
functional description and application information i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 5 ? instruction and data memory management units (mmus), managed using micro tlb structures backed by a unified main tlb ? instruction and data l1 c aches, including a non-blocking da ta cache with hit-under-miss ? virtually indexed/physical ly addressed l1 caches ? 64-bit interface to both l1 caches ? write buffer (bypassable) ? high-speed advanced micr o bus architecture (amba) ? l2 interface ? vector floating point co-processor (vfp) for 3d graphics and other floa ting-point applications hardware acceleration ? etm ? and jtag-based debug support 2.1.1 memory system the arm1136jf-s complex includes 16 kb instruction and 16 kb data l1 caches. it connects to the i.mx31 and i.mx31l l2 unified cache through 64-bit instruction (read-only), 64-bit data read/write (bi-directional), and 64-bit data write interfaces. the embedded 16k sram can be used for audio str eaming data to avoid external memory accesses for the low-power audio playback, for security, or for other applications. there is also a 32-kb rom for bootstrap code and other fre quently-used code and data. a rom patch module provides the ability to patch the inte rnal rom. it can also initiate an external boot by overriding the boot rese t sequence by a jump to a configurable address. table 2 shows information about the i.mx31 and i.mx31l core in tabular form. table 2. i.mx31/i.mx31l core core acronym core name brief description integrated memory includes arm11 or arm1136 arm1136 platform the arm1136? platform consists of the arm1136jf-s core, the etm real-time debug modules, a 6 x 5 multi-la yer ahb crossbar switch (max), and a vector floating processor (vfp). the i.mx31/i.mx31l provide a high-performance arm11 microprocessor core and highly integrated system functions . the arm application processor (ap) and other subsystems address the needs of the personal, wireless, and portable product market with integrated peripherals, advanced processor core, and power management capabilities. ?16 kbyte instruction cache ? 16 kbyte data cache ? 128 kbyte l2 cache ? 32 kbyte rom ? 16 kbyte ram
i.mx31/i.mx31l advance information, rev. 2.3 6 freescale semiconductor functional description and application information 2.2 module inventory table 3 shows an alphabetical listing of the modules in the multimedi a applications processor. for extended descriptions of the modul es, see the reference manual. a cr oss-reference is provided to the electrical specifications and timing information fo r each module with extern al signal connections. table 3. digital and analog modules block mnemonic block name functional grouping brief description section/ page 1-wire? 1-wire interface connectivity peripheral the 1-wire module provides bi-directional communication between the arm11 core and external 1-wire devices. 4.3.4/19 ata advanced technology (at) attachment connectivity peripheral the ata block is an at attachment host interface. it is designed to interface with ide hard disc drives and atapi optical disc drives. 4.3.5/21 audmux digital audio multiplexer multimedia peripheral the audmux interconnections allow multiple, simultaneous audio/voice/data flows between th e ports in point-to-point or point-to-multipoint configurations. 4.3.6/29 camp clock amplifier module clock the camp converts a square wave/sinusoidal input into a rail-to-rail square wave. the output of camp feeds the predivider. 4.3.3/19 ccm clock control module clock the ccm provides clock, reset, and power management control for the i.mx31 and i.mx31l. ? cspi configurable serial peripheral interface (x 3) connectivity peripheral the cspi is equipped with data fifos and is a master/slave configurable serial peripheral interface module, capable of interfacing to both spi master and slave devices. 4.3.7/29 dpll digital phase lock loop clock the dplls produce high-frequency on-chip clocks with low frequency and phase jitters. note: external clock sources provide the reference frequencies. 4.3.8/31 ect embedded cross trigger debug the ect is composed of three ctis (cross trigger interface) and one ctm (cross trigger matrix?key in the multi-core and multi-peripheral debug strategy. ? emi external memory interface memory interface (emi) the emi includes ? multi-master memory interface (m3if) ? enhanced sdram controller (esdctl) ? nand flash controller (nfc) ? wireless external interface module (weim) ? 4.3.9.3/39 , 4.3.9.1/32 , 4.3.9.2/34 epit enhanced periodic interrupt timer timer peripheral the epit is a 32-bit ?set and forget ? timer which starts counting after the epit is enabled by software. it is capable of providing precise interrupts at regular intervals with minimal processor intervention. ? etm embedded trace macrocell debug/trace the etm (from arm, ltd.) su pports real-time instruction and data tracing by way of etm auxiliary i/o port. 4.3.10/47 fir fast infrared interface connectivity peripheral this fir is capable of establishing a 0.576 mbit/s, 1.152 mbit/s or 4 mbit/s half duplex link via a led and ir detector. it supports 0.576 mbit/s, 1.152 mbit/s medium infrared (mir) physical layer protocol and 4mbit/s fast infrared (fir) physical layer protocol defined by irda, version 1.4. 4.3.11/48
functional description and application information i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 7 fusebox fusebox rom the fusebox is a rom that is factory configured by freescale. 4.3.12/48 see also ta b l e 9 gpio general purpose i/o module pins the gpio provides several groups of 32-bit bidirectional, general purpose i/o. this peripheral provides dedicated general-purpose signals that can be configured as either inputs or outputs. ? gpt general purpose timer timer peripheral the gpt is a multipurpose module used to measure intervals or generate periodic output. ? gpu graphics processing unit multimedia peripheral the gpu provides hardware acceleration for 2d and 3d graphics algorithms. ? i 2 c inter ic communication connectivity peripheral the i 2 c provides serial interface for controlling the sensor interface and other external devices. data rates of up to 100 kbits/s are supported. 4.3.13/49 iim ic identification module id the iim provides an interface fo r reading device identification. ? ipu image processing unit multimedia peripheral the ipu supports video and graphics processing functions in the i.mx31 and i.mx31l and interfaces to video, still image sensors, and displays. 4.3.14/50 , 4.3.15/52 kpp keypad port connectivity peripheral the kpp is used for keypad matrix scanning or as a general purpose i/o. this peripheral simplifies the software task of scanning a keypad matrix. ? mpeg-4 mpeg-4 video encoder multimedia peripherals the mpeg-4 encoder accelerates video compression, following the mpeg-4 standard ? mshc memory stick host controller connectivity peripheral the mshc is placed in between the aips and the customer memory stick to support data transfer from the i.mx31 or i.mx31l to the customer memory stick. 4.3.16/77 padio pads i/o buffers and drivers the padio serves as the interface between the internal modules and the device's external connections. 4.3.1/16 pcmcia pcm connectivity peripheral the pcmcia host adapter provides the control logic for pcmcia socket interfaces. 4.3.17/79 pwm pulse-width modulator timer peripheral the pwm has a 16-bit counter and is optimized to generate sound from stored sample audio images. it can also generate tones. 4.3.18/81 rnga random number generator accelerator security the rnga module is a digital integrated circuit capable of generating 32-bit random numbers. it is designed to comply with fips-140 standards for randomness and non-determinism. ? rtc real time clock timer peripheral the rtc module provides a current stamp of seconds, minutes, hours, and days. alarm and timer functions are also available for programming. the rtc supports dates from the year 1980 to 2050. ? rtic run-time integrity checkers security the rtic ensures the integrity of the peripheral memory contents and assists with boot authentication. ? table 3. digital and analog modules (continued) block mnemonic block name functional grouping brief description section/ page
i.mx31/i.mx31l advance information, rev. 2.3 8 freescale semiconductor functional description and application information scc security controller module security the scc is a hardware component composed of two blocks?the secure ram module, and the secu rity monitor. the secure ram provides a way of securely storing sensitive information. ? sdhc secured digital host controller connectivity peripheral the sdhc controls the mmc (multim ediacard), sd (secure digital) memory, and i/o cards by sendi ng commands to cards and performing data accesses to and from the cards. 4.3.19/82 sdma smart direct memory access system control peripheral the sdma controller maximizes the system?s performance by relieving the arm core of the task of bulk data transfer from memory to memory or between memory and on-chip peripherals. ? sim subscriber identification module connectivity peripheral the sim interfaces to an external su bscriber identification card. it is an asynchronous serial interface adapted for smart card communication for e-commerce applications. 4.3.20/83 sjc secure jtag controller debug the sjc provides debug and test control with maximum security and provides a flexible architecture for future derivatives or future multi-cores architecture. 4.3.21/87 ssi synchronous serial interface multimedia peripheral the ssi is a full-duplex, serial port that allows the device to communicate with a variety of seri al devices, such as standard codecs, digital signal processors (dsps), microprocessors, peripherals, and popular industry audio codecs that implement the inter-ic sound bus standard (i2s) and intel ac97 standard. 4.3.22/89 uart universal asynchronous receiver/trans mitter connectivity peripheral the uart provides serial communication capability with external devices through an rs-232 cable or through use of external circuitry that converts infrared signals to electrical signals (for reception) or transforms electrical signals to signals that drive an infrared led (for transmission) to provide low speed irda compatibility. ? usb universal serial bus? 2 host controllers and 1 otg (on-the-go) connectivity peripherals ? usb host 1 is designed to support transceiverless connection to the on-board peripherals in low speed and full speed mode, and connection to the ulpi (utmi+ low-pin count) and legacy full speed transceivers. ? usb host 2 is designed to support transceiverless connection to the cellular modem baseband processor. ? the usb-otg controller offers hs/fs/ls capabilities in host mode and hs/fs in device mode. in host mode, the controller supports direct connection of a fs/ls device (without external hub). in device (bypass) mode, the otg port functions as gateway between the host 1 port and the otg transceiver. 4.3.23/97 wdog watchdog timer module timer peripheral the wdog module protects agains t system failures by providing a method for the system to recove r from unexpected events or programming errors. ? table 3. digital and analog modules (continued) block mnemonic block name functional grouping brief description section/ page
signal descriptions i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 9 3 signal descriptions signal descriptions are in the reference manual. spec ial signal considerations are listed following this paragraph. the bga ba ll assignment is in section 5, ?package information and pinout ? on page 98 . special signal considerations: ? tamper detect (gpio1_6) tamper detect logic is used to is sue a security violation. this logic is activated if th e tamper detect input is asserted. the tamper detect logic is disabled after reset. after enabling the l ogic, it is impos sible to disable it until the next reset. the gpr[16] bit fu nctions as the tamper detect enable bit. gpio1_6 functions similarly to other i/o with gpio capabilities regardless of the status of the tamper detect enable bit. (for example, th e gpio1_6 can function as an input with gpio capabilities, such as sampling th rough psr or generating interrupts.) ? power ready (gpio1_5) the power ready input, gpio1_5, shoul d be connected to an external power management ic power ready output signal. if not used, gpio1_5 must eith er be (a) externally pulled-up to nvcc1 or (b) a no connect, internally pulled-up by enabling the on-chip pull-up resistor. gpio1_5 is a dedicated input and cannot be used as a general-purpose input/output. ? sjc_mod sjc_mod must be externally connected to gnd for normal operation. termination to gnd through an external pull-down resistor (such as 1 k ) is allowed, but the value should be much smaller than the on-chip 100 k pull-up. ? ce_control ce_control is a reserved input and must be externally tied to gnd through a 1 k resistor. ? ttm_pad ttm_pad is for freescale factory use only. control bits indicate pull-up/down disabled. however, ttm_pad is actually connected to an on-chip pull- down device. users must either float this signal or tie it to gnd. ? m_request and m_grant these two signals are not utilized internally. the user should make no connection to these signals. ? clock source select (clkss) the clkss is the input that selects the default reference clock source provi ding input to the dpll. to select ckih, tie clkss to nvcc1. to select ckil, tie clks s to ground. after initialization, the reference clock source can be changed (ini tial setting is overwri tten) by programming the prcs bits in the ccmr.
i.mx31/i.mx31l advance information, rev. 2.3 10 freescale semiconductor electrical characteristics 4 electrical characteristics this section provides the device-level and module-le vel electrical characteris tics for the i.mx31 and i.mx31l. 4.1 i.mx31 and i.mx31l chip-level conditions this section provides the device-level el ectrical characteristics for the ic. see table 4 for a quick reference to the individual tables and sections. caution stresses beyond those listed under ?table 5, "absolute maximum ratings," on page 10 may cause permanent damage to the device. these are stress ratings only. functional operation of the device at these or any other conditions beyond those indicated under ?table 7, "operating ranges," on page 12 is not implied. exposure to absolu te-maximum-rated conditions for extended periods may affect device reliability. table 4. i.mx31/i.mx31l chip-level conditions for these characteristi cs, ? topic appears ? table 5, ?absolute maximum ratings? on page 10 table 7, ?operating ranges? on page 12 table 8, ?interface frequency? on page 13 section 4.1.1, ?supply current specifications? on page 14 section 4.2, ?supply power-up/power-down requirements and restrictions? on page 14 table 5. absolute maximum ratings parameter symbol min max units supply voltage (core) qvcc max -0.5 1.65 v supply voltage (i/o) nvcc max -0.5 3.3 v input voltage range v imax -0.5 nvcc +0.3 v storage temperature t storage -40 125 o c esd damage immunity: v esd v human body model (hbm) ? 2000 machine model (mm) ? 200 charge device model (cdm) ? 500 offset voltage allowed in run mode between core supplies. v core_offset 1 1 the offset is the difference between all core vo ltage pair combinations of qvcc, qvcc1, and qvcc4. ?15mv
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 11 table 6 provides the thermal resistance data for the 14 14 mm, 0.5 mm pitch package. notes 1. junction temperature is a functi on of die size, on-chip power dissi pation, package thermal resistance, mounting site (board) temp erature, ambient temperat ure, air flow, power dissi pation of other components on the board, and board thermal resistance. 2. per jedec jesd51-2 with the single layer boa rd horizontal. board meets jesd51-9 specification. 3. per jedec jesd51-6 with the board horizontal. 4. thermal resistance between the die and the printed circuit board per jedec jesd51-8. board temperature is measured on the top su rface of the board near the package. 5. thermal resistance between the die and the case top surface as measured by th e cold plate method (mil spec-883 method 1012.1). 6. thermal characterization paramete r indicating the temperature differ ence between package top and the junction temperature per jedec jesd51-2. when greek letters are not available, the thermal characterization parameter is written as psi-jt. table 6. thermal resistance data?14 14 mm package rating board symbol value unit notes junction to ambient (natural convection) single layer board (1s) r ja 56 c/w 1, 2, 3 junction to ambient (natural convection) four layer board (2s2p) r ja 30 c/w 1, 3 junction to ambient (@200 ft/min) single layer board (1s) r jma 46 c/w 1, 2, 3 junction to ambient (@200 ft/min) four layer board (2s2p) r jma 26 c/w 1, 3 junction to board ? r jb 17 c/w 1, 4 junction to case ? r jc 10 c/w 1, 5 junction to package top (natural convection) ? jt 2c/w1, 6
i.mx31/i.mx31l advance information, rev. 2.3 12 freescale semiconductor electrical characteristics table 7 provides the operating ranges. note the term nvcc in this section refers to the associated supply rail of an input or output. the association is s hown in the signal multiplexing chapter of the reference manual. caution nvcc6 and nvcc9 must be at the sa me voltage potential. these supplies are connected together on-chip to optimize esd da mage immunity. table 7. operating ranges symbol parameter min max units qvcc, qvcc1, qvcc4 core operating voltage 1 1 measured at package balls, including peripherals, arm, and l2 cache supplies (qvcc, qvcc1, qvcc4, respectively). v 0 f arm 400 mhz, non-overdrive 0 f arm 400 mhz, overdrive 2 0 f arm 532 mhz, overdrive 2 2 supply voltage is considered ?overdrive? for voltages above 1.47 v. operation time in overdrive?whether switching or not?must be limited to a cumulative duration of 1.25 years (10, 950 hours) or less to sustain the maximum operating voltage without significant device degr adation?for example, 25% (average 6 hours out of 24 yours per day) duty cycle for 5-year rated equipment. to tolerate t he maximum operating overdrive voltage for 10 years, the device must have a duty cycle of 12.5% or less in overdrive (for example 3 out of 24 hours per day). belo w 1.47v, duty cycle restrictions may apply for equipment rated above 5 years. 1.22 >1.47 1.55 1.47 1.65 1.65 state retention voltage 3 3 the sr voltage is applied to qvcc, qvcc1, and qv cc4 after the device is placed in sr mode. the real-time clock (rtc) is operational in state retention (sr) mode. 0.95 ? nvcc1, nvcc3?10 i/o supply voltage, except ddr 4 non-overdrive overdrive 5 4 overshoot and undershoot conditions (transitions above nvcc and below gnd) on i/o must be held below 0.6 v, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. overshoot/undershoot must be controlled through printed circuit board layout, transmission lin e impedance matching, signal li ne termination, or other methods. non-compliance to this specification may affect de vice reliability or cause permanent damage to the device. 5 supply voltage is considered ?overdrive? for voltages above 3.1 v. operation time in overdrive?whether switching or not?must be limited to a cumulative duration of 1 year (8,760 hours) or less to sustain the maximum operating voltage without significant device degrada tion?for example, 20% (average 4.8 hours out of 24 hours per day) duty cycle for 5-year rated equipment. operation at 3.3 v that exceeds a cumulative 3, 504 hours may cause non-operation whenever supply voltage is reduced to 1.8 v; degradation may render the device too slow or inoperable. below 3.1 v, duty cycle restrictions may apply for equipment rated above 5 years. 1.75 >3.1 3.1 3.3 v nvcc2, nvcc21, nvcc22 i/o supply voltage, ddr only 1.75 1.95 v fvcc, mvcc, svcc, uvcc pll (phase-locked loop) and fpm (freque ncy pre-multiplier) supply voltage 6 non-overdrive overdrive 2 1.3 >1.47 1.47 1.6 v ioqvdd on-device level shifter supply voltage 1.6 1.9 v fuse_vdd fusebox read supply voltage 1.65 1.95 v fusebox write (program) supply voltage 7 3.0 3.3 v t a operating ambient temperature range 0 70 o c
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 13 table 8 provides information for interface frequency limits. for more deta ils about clocks characteristics, see section 4.3.8, ?dpll elec trical specifications ? on page 31 and section 4.3.3, ?clock amplifier module (camp) electri cal characteristics on page 19 . table 9 shows the fusebox supply current parameters. 6 for normal operating conditions, plls? and core supplies must maintain the following relation: pll core ? 100 mv. in other words, for a 1.6 v core supply, pll supplies must be set to 1.5 v or higher. pll voltage must not be altered after power up, otherwise the pll will be unstable and lose lock. to minimize inducing noise on the pll supply line, source the voltage from a low-noise, dedicated supply. 7 fuses might be inadvertently blown if written to while the voltage is below this minimum. table 8. interface frequency id parameter symbol min typ max units 1 jtag tck frequency f jtag dc 5 10 mhz 2 ckil frequency 1 1 ckil must be driven by an external clock source to ensure proper start-up and operation of the device. ckil is needed to clock the internal reset synchronizer, the watchdog, and the real-time clock. f ckil 32 32.768 38.4 khz 3 ckih frequency 2 2 dptc functionality, specifically the voltage/frequency rela tion table, is dependent on ckih frequency. at the time of publication, standard tables used by freescale oss provided fo r a ckih frequency of 26 mhz only. any deviation from this frequency requires an update to the os. for more details, re fer to the particular os user's guide documentation. f ckih 15 26 75 mhz table 9. fusebox supply current parameters ref. num description symbol minimum typical maximum units 1 efuse program current. 1 current to program one efuse bit: efuse_pgm = 3.0v 1 the current i program is during program time (t program ). i program ?3560ma 2 efuse read current 2 current to read an 8-bit efuse word vdd_fusebox = 1.875v 2 the current i read is present for approximately 50 ns of the read access to the 8-bit word. i read ?5 8ma
i.mx31/i.mx31l advance information, rev. 2.3 14 freescale semiconductor electrical characteristics 4.1.1 supply current specifications table 10 shows the core current consum ption for the i.mx31 and i.mx31l. 4.2 supply power-up/power-down requirements and restrictions any i.mx31/i.mx31l board design must comply with the power-up and power-down sequence guidelines as described in this section to guarantee reliable operation of the de vice. any deviation from these sequences may result in any or all of the foll owing situations: ? cause excessive curren t during power up phase. ? prevent the device from booting. ? cause irreversible damage to the i.mx31/i.mx31l (worst-case scenario). table 10. current consumption 1, 2 1 typical column: ta = 25 c 2 maximum column: ta = 70 c mode conditions qvcc (peripheral) qvcc1 (arm) qvcc4 (l2) fvcc + mvcc + svcc + uvcc (pll) unit typ max typ max typ max typ max state retention ? qvcc and qvcc1 = 0.95 v ? l2 caches are power gated (qvcc4 = 0 v) ? all plls are off, vcc = 1.4 v ? arm is in well bias ?fpm is off ? 32 khz input is on ? ckih input is off ? camp is off ? tck input is off ? all modules are off ? no external resistive loads ? rnga oscillator is off 0.8 ? 0.5 ? ? ? 0.04 ? ma wait ? qvcc,qvcc1, and qvcc4 = 1.22 v ? arm is in wait for interrupt mode ? max is active ? l2 cache is stopped but powered ? mcu pll is on (532 mhz), vcc = 1.4 v ? usb pll and spll are off, vcc = 1.4 v ?fpm is on ? ckih input is on ? camp is on ? 32 khz input is on ? all clocks are gated off ? all modules are off (by programming cgr[2:0] registers) ? rnga oscillator is off ? no external resistive loads 6.0 ? 3.0 ? 0.04 ? 3.5 ? ma
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 15 4.2.1 powering up the power on reset (por ) pin must be kept asserted (low) throughout the power up sequence. power up logic must guarantee that al l power sources reach their target values prior to the release (de-assertion) of por . figure 2 shows the power-up sequence. note stages need to be performed in the order shown; however, within each stage, supplies can be powered up in any order. for example, supplies ioqvdd, nvcc1, and nvcc3 through nvcc10 do not need to be powered up in the order shown. caution nvcc6 and nvcc9 must be at the sa me voltage potential. these supplies are connected together on-chip to optimize esd da mage immunity. figure 2. power-up sequence 4.2.2 powering down the power-down sequence should be completed as follows: 1. lower the fuse_vdd supply. 2. lower the remaining supplies. release por qvcc, qvcc1, qvcc4 ioqvdd, nvcc1, nvcc3?10 fvcc, mvcc, svcc, uvcc nvcc2, nvcc21, nvcc22 fuse_vdd hold por asserted 1 1 1, 2 1 1 1, 3 notes: 1 the board design must guarantee that supplies reach 90% level before transition to the next state, using power management ic or other means. 2 the nvcc1 supply must not precede ioqvdd by more than 0.2 v until ioqvdd has reached 1.5 v. if ioqvdd is powered up first, there are no restrictions. 3 it is allowable for fvcc, mvcc, svcc, and uvcc to be up after fuse_vdd.
i.mx31/i.mx31l advance information, rev. 2.3 16 freescale semiconductor electrical characteristics 4.3 module-level electrical specifications this section contains the i.mx31 and i.mx31l electrical informat ion including timing specifications, arranged in alphabetical order by module name. 4.3.1 i/o pad (padio) electrical specifications this section specifies the ac/dc characterization of functional i/o of the i.mx31. there are two main types of i/o: regular and ddr. in this document, the ?regular? type is referred to as gpio. 4.3.1.1 dc electrical characteristics the i.mx31/i.mx31l i/o pa rameters appear in table 11 for gpio. see table 7, "operating ranges," on page 12 for temperature and supply voltage ranges. note the term nvcc in this section refers to the associated supply rail of an input or output. the association is s hown in the signal multiplexing chapter of the reference manual. nvcc for table 11 refers to nvcc1 and nvcc3?10; qvcc refers to qvcc, qvcc1, and qvcc4. table 11. gpio dc electrical parameters parameter symbol test cond itions min typ max units high-level output voltage v oh i oh = -1 ma nvcc -0.15 ? ? v i oh = specified drive 0.8*nvcc ? ? v low-level output voltage v ol i ol = 1 ma ? ? 0.15 v i ol = specified drive ? ? 0.2*nvcc v high-level output current, slow slew rate i oh_s v oh =0.8*nvcc std drive high drive max drive -2 -4 -8 ??ma high-level output current, fast slew rate i oh_f v oh =0.8*nvcc std drive high drive max drive -4 -6 -8 ??ma low-level output current, slow slew rate i ol_s v ol =0.2*nvcc std drive high drive max drive 2 4 8 ??ma low-level output current, fast slew rate i ol_f v ol =0.2*nvcc std drive high drive max drive 4 6 8 ??ma high-level dc input voltage v ih ? 0.7*nvcc ? nvcc v low-level dc input voltage v il ?0?0.3*qvccv
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 17 the i.mx31/i.mx31l i/o pa rameters appear in table 12 for ddr (double data rate). see table 7, "operating ranges," on page 12 for temperature and supply voltage ranges. note nvcc for table 12 refers to nvcc2, nvcc21, and nvcc22. input hysteresis v hys hysteresis enabled 0.25 ? ? v schmitt trigger vt+ v t + hysteresis enabled 0.5*qvcc ? ? v schmitt trigger vt- v t - hysteresis enabled ? ? 0.5*qvcc v pull-up resistor (100 k pu) r pu ? ? 100 ? k pull-down resistor (100 k pd) r pd ? ? 100 ? input current (no pu/pd) i in v i = nvcc or gnd ? ? 1 a input current (100 k pu) i in v i = 0 v i = nvcc ??25 0.1 a a input current (100 k pd) i in v i = 0 v i = nvcc ? ? 0.25 28 a a tri-state leakage current i oz v i = nvcc or gnd i/o = high z ?? 2 a table 12. ddr (double data rate) i/o dc electrical parameters parameter symbol test conditions min typ max units high-level output voltage v oh i oh = -1 ma nvcc -0.12 ? ? v i oh = specified drive 0.8*nvcc ? ? v low-level output voltage v ol i ol = 1 ma ? ? 0.08 v i ol = specified drive ? ? 0.2*nvcc v high-level output current i oh v oh =0.8*nvcc std drive high drive max drive ddr drive 1 1 use of ddr drive can result in excessive overshoot and ringing. -3.6 -7.2 -10.8 -14.4 ??ma low-level output current i ol v ol =0.2*nvcc std drive high drive max drive ddr drive 1 3.6 7.2 10.8 14.4 ??ma high-level dc input voltage v ih ? 0.7*nvcc nvcc nvcc+0.3 v low-level dc input voltage v il ? -0.3 0 0.3*nvcc v tri-state leakage current i oz v i = nvcc or gnd i/o = high z ?? 2 a table 11. gpio dc electrical parameters (continued) parameter symbol test cond itions min typ max units
i.mx31/i.mx31l advance information, rev. 2.3 18 freescale semiconductor electrical characteristics 4.3.2 ac electrical characteristics figure 3 depicts the load circuit for outputs. figure 4 depicts the output transi tion time waveform. the range of operating c onditions appears in table 13 for slow general i/o, table 14 for fast general i/o, and table 15 for ddr i/o (unless otherwise noted). figure 3. load circuit for output figure 4. output transition time waveform table 13. ac electrical characteristics of slow 1 general i/o 1 fast/slow characteristic is selected per gpio (where av ailable) by ?slew rate? control. see reference manual. id parameter symbol test condition min typ max units pa1 output transition times (max drive) tpr 25 pf 50 pf 0.92 1.5 1.95 2.98 3.17 4.75 ns output transition times (high drive) tpr 25 pf 50 pf 1.52 2.75 ?4.81 8.42 ns output transition times (std drive) tpr 25 pf 50 pf 2.79 5.39 ?8.56 16.43 ns table 14. ac electrical characteristics of fast 1 general i/o 2 1 fast/slow characteristic is selected per gpio (where available) by ?slew rate? control. see reference manual. 2 use of gpio in fast mode with the associated nvcc > 1.95 v can result in excessive overshoot and ringing. id parameter symbol test condition min typ max units pa1 output transition times (max drive) tpr 25 pf 50 pf 0.68 1.34 1.33 2.6 2.07 4.06 ns output transition times (high drive) tpr 25 pf 50 pf .91 1.79 1.77 3.47 2.74 5.41 ns output transition times (std drive) tpr 25 pf 50 pf 1.36 2.68 2.64 5.19 4.12 8.11 ns te s t po i n t from output under test cl cl includes package, probe and fixture capacitance 0v nvcc 20% 80% 80% 20% pa 1 pa 1 output (at i/o)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 19 4.3.3 clock amplifier module (cam p) electrical characteristics this section outlines the clock amplifier modul e (camp) specific elect rical characteristics. table 16 shows clock amplifier electrical characteristics. 4.3.4 1-wire electrical specifications figure 5 depicts the rpp timing, and table 17 lists the rpp timing parameters. figure 5. reset and presence pulses (rpp) timing diagram table 15. ac electrical characteristics of ddr i/o id parameter symbol test condition min typ max units pa1 output transition times (ddr drive) 1 1 use of ddr drive can result in excessive overshoot and ringing. tpr 25 pf 50 pf 0.51 0.97 0.82 1.58 1.28 2.46 ns output transition times (max drive) tpr 25 pf 50 pf 0.67 1.29 1.08 2.1 1.69 3.27 ns output transition times (high drive) tpr 25 pf 50 pf .99 1.93 1.61 3.13 2.51 4.89 ns output transition times (std drive) tpr 25 pf 50 pf 1.96 3.82 3.19 6.24 4.99 9.73 ns table 16. clock amplifier electrical characteristics for ckih input parameter min typ max units input frequency 15 ? 75 mhz vil (for square wave input) 0 ? 0.3 v vih (for square wave input) (vdd 1 - 0.25) 1 vdd is the supply voltage of camp. see reference manual. ?3v sinusoidal input amplitude 0.4 2 2 this value of the sinusoidal input will be measured through characterization. ?vddvp-p duty cycle 45 50 55 % 1-wire bus ds2502 tx ?presence pulse? (batt_line) owire tx ?reset pulse? ow1 ow2 ow3 ow4
i.mx31/i.mx31l advance information, rev. 2.3 20 freescale semiconductor electrical characteristics figure 6 depicts write 0 sequence timing, and table 18 lists the timing parameters. figure 6. write 0 sequence timing diagram figure 7 depicts write 1 sequence timing, figure 8 depicts the read sequence timing, and table 19 lists the timing parameters. figure 7. write 1 sequence timing diagram figure 8. read sequence timing diagram table 17. rpp sequence delay comparisons timing parameters id parameters symbol min typ max units ow1 reset time low t rstl 480 511 ? s ow2 presence detect high t pdh 15 ? 60 s ow3 presence detect low t pdl 60 ? 240 s ow4 reset time high t rsth 480 512 ? s table 18. wr0 sequence timing parameters id parameter symbol min typ max units ow5 write 0 low time t wr0_low 60 100 120 s ow6 transmission time slot t slot ow5 117 120 s ow5 ow6 1-wire bus (batt_line) ow7 ow8 1-wire bus (batt_line) ow7 ow8 ow9 1-wire bus (batt_line)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 21 4.3.5 ata electrical specifications (ata bus, bus buffers) this section discusses ata parameters. for a detail ed description, refer to the ata specification. the user needs to use level shifters for 3.3 volt or 5.0 volt compatibi lity on the ata interface. the use of bus buffers introduces delay on the bus a nd introduces skew between signal lines. these factors make it difficult to operate the bus at the highest speed (udma-5) when bus buffers are used. if fast udma mode operation is needed, this ma y not be compatible with bus buffers. another area of attention is the slew rate limit imposed by th e ata specification on the ata bus. according to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 v/ns with a 40 pf load. not many vendors of bus buffers specify slew rate of the outgoing signals. when bus buffers are used, the ata_data bus buffer is special. this is a bidirectional bus buffer, so a direction control signal is needed. this direction control signal is ata_buffer_en. when its high, the bus should drive from host to device. when its low, the bus should drive from device to host. steering of the signal is such that contention on the host and device tri-state busse s is always avoided. 4.3.5.1 timing parameters in the timing equations, some timi ng parameters are used. these para meters depend on the implementation of the ata interface on silicon, the bus buff er used, the cable delay and cable skew. table 20 shows ata timing parameters. table 19. wr1/rd timing parameters id parameter symbol min typ max units ow7 write 1 / read low time t low1 1 5 15 s ow8 transmission time slot t slot 60 117 120 s ow9 release time t release 15 ? 45 s table 20. ata timing parameters name description value/ contributing factor 1 t bus clock period (ipg_clk_ata) peripheral clock frequency ti_ds set-up time ata_data to ata_iordy edge (udma-in only) udma0 udma1 udma2, udma3 udma4 udma5 15 ns 10 ns 7 ns 5 ns 4 ns ti_dh hold time ata_iordy edge to ata_data (udma-in only) udma0, udma1, udma2, udma3, udma4 udma5 5.0 ns 4.6 ns
i.mx31/i.mx31l advance information, rev. 2.3 22 freescale semiconductor electrical characteristics 4.3.5.2 pio mode timing figure 9 shows timing for pio read, and table 21 lists the timing parameters for pio read. figure 9. pio read timing diagram tco propagation delay bus clock l-to-h to ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data, ata_buffer_en 12.0 ns tsu set-up time ata_data to bus clock l-to-h 8.5 ns tsui set-up time ata_iordy to bus clock h-to-l 8.5 ns thi hold time ata_iordy to bus clock h to l 2.5 ns tskew1 max difference in propagation delay bus clock l-to-h to any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en 7ns tskew2 max difference in buffer propagation delay for any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en transceiver tskew3 max difference in buffer propagation delay for any of following signals ata_iordy, ata_data (read) transceiver tbuf max buffer propagation delay transceiver tcable1 cable propagation delay for ata_data cable tcable2 cable propagation delay for control signals ata_dior, ata_diow, ata_iordy, ata_dmack cable tskew4 max difference in cable propagation delay between ata_iordy and ata_data (read) cable tskew5 max difference in cable propagation delay between ( ata_dior, ata_diow, ata_dmack) and ata_cs0, ata_cs1, ata_da2, ata_d a1, ata_da0, ata_data(write) cable tskew6 max difference in cable propagation delay without accounting for ground bounce cable 1 values provided where applicable. table 20. ata timing parameters (continued) name description value/ contributing factor 1
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 23 figure 10 shows timing for pio write, and table 22 lists the timing parameters for pio write. figure 10. multiword dma (mdma) timing table 21. pio read timing parameters ata parameter parameter from figure 9 value controlling variable t1 t1 t1 (min) = time_1 * t - (tskew1 + tskew2 + tskew5) time_1 t2 t2r t2 min) = time_2r * t - (tskew1 + tskew2 + tskew5) time_2r t9 t9 t9 (min) = time_9 * t - (tskew1 + tskew2 + tskew6) time_3 t5 t5 t5 (min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 if not met, increase time_2 t6 t6 0 ? ta ta ta (min) = (1.5 + time_ax) * t - (tco + tsui + tcable2 + tcable2 + 2*tbuf) time_ax trd trd1 trd1 (max) = (-trd) + (tskew3 + tskew4) trd1 (min) = (time_pio_rd x - 0.5)*t - (tsu + thi) (time_pio_rdx - 0.5) * t > tsu + thi + tskew3 + tskew4 time_pio_rdx t0 ? t0 (min) = (time_1 + time_2 + time_9) * t time_1, time_2r, time_9 table 22. pio write timing parameters ata parameter parameter from figure 10 value controlling variable t1 t1 t1 (min) = time_1 * t - (tskew1 + tskew2 + tskew5) time_1 t2 t2w t2 (min) = time_2w * t - (tskew1 + tskew2 + tskew5) time_2w t9 t9 t9 (min) = time_9 * t - (tskew1 + tskew2 + tskew6) time_9 t3 ? t3 (min) = (time_2w - time_on)* t - (tskew1 + tskew2 +tskew5) if not met, increase time_2w t4 t4 t4 (min) = time_4 * t - tskew1 time_4 ta ta ta = (1.5 + time_ax) * t - (tco + tsui + tcable2 + tcable2 + 2*tbuf) time_ax
i.mx31/i.mx31l advance information, rev. 2.3 24 freescale semiconductor electrical characteristics figure 11 shows timing for mdma read, figure 12 shows timing for mdma write, and table 23 lists the timing parameters for mdma read and write. figure 11. mdma read timing diagram figure 12. mdma write timing diagram t0 ? t0(min) = (time_1 + time_2 + time_9) * t time_1, time_2r, time_9 ? ? avoid bus contention when switching buffer on by making ton long enough. ? ? ? avoid bus contention when switching buffer off by making toff long enough. ? table 23. mdma read and write timing parameters ata parameter parameter from figure 11 , figure 12 value controlling variable tm, ti tm tm (min) = ti (min) = time_m * t - (tskew1 + tskew2 + tskew5) time_m td td, td1 td1.(min) = td (min) = time_d * t - (tskew1 + tskew2 + tskew6) time_d tk tk tk.(min) = time_k * t - (tskew1 + tskew2 + tskew6) time_k table 22. pio write timing parameters (continued) ata parameter parameter from figure 10 value controlling variable
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 25 4.3.5.3 udma in timing figure 13 shows timing when the udma in transfer starts, figure 14 shows timing when the udma in host terminates transfer, figure 15 shows timing when the udma in device terminates transfer, and table 24 lists the timing parameters for udma in burst. figure 13. udma in transfer starts timing diagram t0 ? t0 (min) = (time_d + time_k) * t time_d, time_k tg(read) tgr tgr (min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 tgr.(min-drive) = td - te(drive) time_d tf(read) tfr tfr (min-drive) = 0 ? tg(write) ? tg (min-write) = time_d * t - (tskew1 + tskew2 + tskew5) time_d tf(write) ? tf (min-write) = time_k * t - (tskew1 + tskew2 + tskew6) time_k tl ? tl (max) = (time_d + time_k-2)*t - (tsu + tco + 2*tbuf + 2*tcable2) time_d, time_k tn, tj tkjn tn= tj= tkjn = (max(time_k,. time_j n) * t - (tskew1 + tskew2 + tskew6) time_jn ?ton toff ton = time_on * t - tskew1 toff = time_off * t - tskew1 ? table 23. mdma read and write timing parameters (continued) ata parameter parameter from figure 11 , figure 12 value controlling variable
i.mx31/i.mx31l advance information, rev. 2.3 26 freescale semiconductor electrical characteristics figure 14. udma in host terminates transfer timing diagram figure 15. udma in device terminates transfer timing diagram table 24. udma in burst timing parameters ata parameter parameter from figure 13 , figure 14 , figure 15 description controlling variable tack tack tack (min) = (time_ack * t) - (tskew1 + tskew2) time_ack tenv tenv tenv (min) = (time_env * t) - (tskew1 + tskew2) tenv (max) = (time_env * t) + (tskew1 + tskew2) time_env tds tds1 tds - (tskew3) - ti_ds > 0 tskew3, ti_ds, ti_dh should be low enough tdh tdh1 tdh - (tskew3) - ti_dh > 0
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 27 4.3.5.4 udma out timing figure 16 shows timing when the ud ma out transfer starts, figure 17 shows timing when the udma out host terminates transfer, figure 18 shows timing when the udma out device terminates transfer, and table 25 lists the timing paramete rs for udma out burst. figure 16. udma out transfer starts timing diagram tcyc tc1 (tcyc - tskew) > t t big enough trp trp trp (min) = time_rp * t - (tskew1 + tskew2 + tskew6) time_rp ?tx1 1 (time_rp * t) - (tco + tsu + 3t + 2 *tbuf + 2*tcable2) > trfs (drive) time_rp tmli tmli1 tmli1 (min) = (time_mlix + 0.4) * t time_mlix tzah tzah tzah (min) = (time_zah + 0.4) * t time_zah tdzfs tdzfs tdzfs = (time_dzfs * t) - (tskew1 + tskew2) time_dzfs tcvh tcvh tcvh = (time_cvh *t) - (tskew1 + tskew2) time_cvh ?ton toff ton = time_on * t - tskew1 toff = time_off * t - tskew1 ? 1 there is a special timing requirement in the ata host that require s the internal diow to go only high 3 clocks after the last active edge on the dstrobe signal. the equation given on this line tries to capture this constraint. 2. make ton and toff big enough to avoid bus contention table 24. udma in burst timing parameters (continued) ata parameter parameter from figure 13 , figure 14 , figure 15 description controlling variable
i.mx31/i.mx31l advance information, rev. 2.3 28 freescale semiconductor electrical characteristics figure 17. udma out host terminates transfer timing diagram figure 18. udma out device terminates transfer timing diagram table 25. udma out burst timing parameters ata parameter parameter from figure 16 , figure 17 , figure 18 value controlling variable tack tack tack (min) = (time_ack * t) - (tskew1 + tskew2) time_ack tenv tenv tenv (min) = (time_env * t) - (tskew1 + tskew2) tenv (max) = (time_env * t) + (tskew1 + tskew2) time_env tdvs tdvs tdvs = (time_dvs * t) - (tskew1 + tskew2) time_dvs tdvh tdvh tdvs = (time_dvh * t) - (tskew1 + tskew2) time_dvh tcyc tcyc tcyc = time_cyc * t - (tskew1 + tskew2) time_cyc t2cyc ? t2cyc = time_cyc * 2 * t time_cyc
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 29 4.3.6 audmux electrical specifications the audmux provides a programmable interconnect logic for voice, a udio and data routing between internal serial interfaces (ssi) and external serial interfaces (audio and voice codecs). the ac timing of audmux external pins is hence governed by the ssi m odule. please refer to their respective electrical specifications. 4.3.7 cspi electrical specifications this section describes the electr ical information of the cspi. 4.3.7.1 cspi timing figure 19 and figure 20 depict the master mode and sl ave mode timings of cspi, and table 26 lists the timing parameters. trfs1 trfs trfs = 1.6 * t + tsui + tco + tbuf + tbuf ? ? tdzfs tdzfs = time_dzfs * t - (tskew1) time_dzfs tss tss tss = time_ss * t - (tskew1 + tskew2) time_ss tmli tdzfs_mli tdzfs_mli =max (time_dzfs, time_mli) * t - (tskew1 + tskew2) ? tli tli1 tli1 > 0 ? tli tli2 tli2 > 0 ? tli tli3 tli3 > 0 ? tcvh tcvh tcvh = (time_cvh *t ) - (tskew1 + tskew2) time_cvh ?ton toff ton = time_on * t - tskew1 toff = time_off * t - tskew1 ? table 25. udma out burst timi ng parameters (continued) ata parameter parameter from figure 16 , figure 17 , figure 18 value controlling variable
i.mx31/i.mx31l advance information, rev. 2.3 30 freescale semiconductor electrical characteristics figure 19. cspi master mode timing diagram figure 20. cspi slave mode timing diagram table 26. cspi interf ace timing parameters id parameter symbol min max units cs1 sclk cycle time t clk 60 ? ns cs2 sclk high or low time t sw 30 ? ns cs3 sclk rise or fall t rise/fall ?7.6ns cs4 ssx pulse width t cslh 25 ? ns cs5 ssx lead time (cs setup time) t scs 25 ? ns cs6 ssx lag time (cs hold time) t hcs 25 ? ns cs7 data out setup time t smosi 5?ns cs8 data out hold time t hmosi 5?ns cs9 data in setup time t smiso 6?ns cs10 data in hold time t hmiso 5?ns cs11 s pi _rd y setup time 1 1 spi_rdy is sampled internally by ipg_clk and is asynchronous to all other cspi signals. t sdry ??ns cs1 cs7 cs8 cs2 cs2 cs4 cs6 cs5 cs9 cs10 sclk ssx mosi miso s pi _ rdy cs11 cs3 cs3 cs1 cs7 cs8 cs2 cs2 cs4 cs6 cs5 cs9 cs10 sclk ssx miso mosi cs3 cs3
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 31 4.3.8 dpll electrical specifications the three pll?s of the i.mx31/i.mx31l (mcu, usb, and serial pll) are all based on same dpll design. the characteristics provided he rein apply to all of them, excep t where noted explicitly. the pll characteristics are provide d based on measurements done for both s ources?external clock source (ckih), and fpm (frequency pr e-multiplier) source. 4.3.8.1 electrical specifications table 27 lists the dpll specification. table 27. dpll specifications parameter min typ max unit comments ckih frequency 15 26 1 1 the user or board designer must take in to account that the use of a frequency other than 26 mhz would require adjustment to the dptc-dvfs table, which is incorp orated into operating system code. 75 2 2 the pll reference frequency must be 35 mhz. therefore, for frequencies between 35 mhz and 70 mhz, program the predivider to divide by 2 or more. if the ckih frequency is above 70 mhz, program the predivider to 3 or more. for pd bit description, see the reference manual. mhz ? ckil frequency (frequency pre-multiplier (fpm) enable mode) ? 32; 32.768, 38.4 ? khz fpm lock time 480 s. predivision factor (pd bits) 1 ? 16 ? ? pll reference frequency range after predivider 15 ? 35 mhz 15 ckih frequency/pd 35 mhz 15 fpm output/pd 35 mhz pll output frequency range: mpll and spll upll 52 190 ? 532 240 mhz ? maximum allowed reference clock phase noise. ? ? 100 ps ? frequency lock time (fol mode or non-integer mf) ? ? 398 ? cycles of divided reference clock. phase lock time ? ? 100 s in addition to the frequency maximum allowed pll supply voltage ripple ? ? 25 mv f modulation < 50 khz maximum allowed pll supply voltage ripple ? ? 20 mv 50 khz < f modulation < 300 khz maximum allowed pll supply voltage ripple ? ? 25 mv f modulation > 300 khz pll output clock phase jitter ? ? 5.2 ns measured on clko pin pll output clock period jitter ? ? 420 ps measured on clko pin
i.mx31/i.mx31l advance information, rev. 2.3 32 freescale semiconductor electrical characteristics 4.3.9 emi electrical specifications this section provides electrical para metrics and timings for emi module. 4.3.9.1 nand flash contro ller interface (nfc) the nfc supports normal timing mode, using tw o flash clock cycles for one access of re and we . ac timings are provided as multiplications of the clock cycle and fixed delay. figure 21 , figure 22 , figure 23 , and figure 24 depict the relative timing requirements among different signa ls of the nfc at module level, for normal mode, and table 28 lists the timing parameters. figure 21. command latch cycle timing diagram figure 22. address latch cycle timing diagram nfcle nfce nfwe nfale nfio[7:0] command nf9 nf8 nf1 nf2 nf5 nf3 nf4 nf6 nf7 nfcle nfce nfwe nfale nfio[7:0] address nf9 nf8 nf1 nf5 nf3 nf4 nf6 nf11 nf10 nf7
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 33 figure 23. write data latch cycle timing diagram figure 24. read data latch cycle timing diagram table 28. nfc timing parameters 1 id parameter symbol timing t = nfc clock cycle 2 example timing for nfc clock 33 mhz t = 30 ns unit min max min max nf1 nfcle setup time tcls t?1.0 ns ? 29 ? ns nf2 nfcle hold time tclh t?2.0 ns ? 28 ? ns nf3 nfce setup time tcs t?1.0 ns ? 29 ? ns nf4 nfce hold time tch t?2.0 ns ? 28 ? ns nf5 nf_wp pulse width twp t?1.5 ns 28.5 ns nf6 nfale setup time tals t ? 30 ? ns nfcle nfce nfwe nfale nfio[15:0] data to nf nf9 nf8 nf1 nf5 nf3 nf6 nf11 nf10 nf7 nfcle nfce nfre nfrb nfio[15:0] data from nf nf13 nf15 nf14 nf17 nf12 nf16
i.mx31/i.mx31l advance information, rev. 2.3 34 freescale semiconductor electrical characteristics note high is defined as 80% of signal value and low is defined as 20% of signal value. note timing for hclk is 133 mhz and intern al nfc clock (flash clock) is approximately 33 mhz (30 ns). all timings are listed according to this nfc clock frequency (multiples of nf c clock phases), except nf16 and nf17, which are not nfc clock related. 4.3.9.2 wireless external interface module (weim) all weim output control signals may be asserted and deasserted by inte rnal clock related to bclk rising edge or falling edge according to corresponding assertion/negation contro l fields. address always begins related to bclk falling edge but may be ended both on risi ng and falling edge in muxed mode according to control register configuration. output data begins related to bcl k rising edge except in muxed mode where both rising and falling edge ma y be used according to control regi ster configurati on. input data, ecb and dtack all captured according to bclk rising edge time. figure 25 depicts the timing of the weim module, and table 29 lists the timing parameters. nf7 nfale hold time talh t?3.0 ns ? 27 ? ns nf8 data setup time tds t ? 30 ? ns nf9 data hold time tdh t?5.0 ns ? 25 ? ns nf10 write cycle time twc 2t 60 ns nf11 nfwe hold time twh t?2.5 ns 27.5 ns nf12 ready to nfre low trr 6t ? 180 ? ns nf13 nfre pulse width trp 1.5t ? 45 ? ns nf14 read cycle time trc 2t ? 60 ? ns nf15 nfre high hold time treh 0.5t?2.5 ns 12.5 ? ns nf16 data setup on read tdsr n/a 10 ? ns nf17 data hold on read tdhr n/a 0 ? ns 1 the flash clock maximum frequency is 50 mhz. 2 subject to dpll jitter specification on table 27, "dpll specifications," on page 31 . table 28. nfc timing parameters 1 (continued) id parameter symbol timing t = nfc clock cycle 2 example timing for nfc clock 33 mhz t = 30 ns unit min max min max
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 35 figure 25. weim bus timing diagram table 29. weim bus timing parameters id parameter min max unit we1 clock fall to address valid -0.5 2.5 ns we2 clock rise/fall to address invalid -0.5 5 ns we3 clock rise/fall to cs [x] valid -3 3 ns we4 clock rise/fall to cs [x] invalid -3 3 ns we5 clock rise/fall to rw valid -3 3 ns we6 clock rise/fall to rw invalid -3 3 ns we7 clock rise/fall to oe valid -3 3 ns we1 we2 we3 we4 we5 we6 we7 we8 we9 we10 we11 we12 we13 we14 we16 we15 we18 we17 we20 we19 we21 we22 we23 bclk address cs [x] rw oe eb [x] lba output data bclk input data weim outputs timing weim inputs timing ecb dtack ...
i.mx31/i.mx31l advance information, rev. 2.3 36 freescale semiconductor electrical characteristics note high is defined as 80% of signal value and low is defined as 20% of signal value. test conditions: load capacitance, 25 pf . recommended drive strength for all controls, address, and bclk is max drive. figure 26 , figure 27 , figure 28 , figure 29 , figure 30 , and figure 31 depict some examples of basic weim accesses to external memory devi ces with the timing parameters mentioned in table 29 for specific control parameter settings. we8 clock rise/fall to oe invalid -3 3 ns we9 clock rise/fall to eb [x] valid -3 3 ns we10 clock rise/fall to eb [x] invalid -3 3 ns we11 clock rise/fall to lba valid -3 3 ns we12 clock rise/fall to lba invalid -3 3 ns we13 clock rise/fall to output data valid - 2.5 4 ns we14 clock rise to output data invalid - 2.5 4 ns we15 input data valid to clock rise, fce=0 fce=1 8 2.5 ? ns we16 clock rise to input data invalid, fce=0 fce=1 -2 -2 ? ns we17 ecb setup time, fce=0 fce=1 6.5 3.5 ? ns we18 ecb hold time, fce=0 fce=1 -2 2 ? ns we19 dtack setup time 1 0?ns we20 dtack hold time 1 4.5 ? ns we21 bclk high level width 2, 3 ? tcycle/ 2-3 ns we22 bclk low level width 2, 3 ? tcycle/ 2-3 ns we23 bclk cycle time 2 15 ? ns 1 applies to rising edge timing 2 bclk parameters are being measured from the 50% vdd. 3 the actual cycle time is derived from the ahb bus clock frequency. table 29. weim bus timing parameters (continued) id parameter min max unit
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 37 figure 26. asynchronous memory timi ng diagram for read access?wsc=1 figure 27. asynchronous memory timing diagram for write access? wsc=1, ebwa=1, ebwn=1, lbn=1 last valid address v1 v1 bclk addr data rw lba oe eb [y] cs [x] next address we1 we2 we3 we4 we7 we8 we10 we9 we11 we12 we15 we16 last valid address v1 v1 bclk addr data rw lba oe eb [y] cs [x] next address we1 we2 we3 we4 we5 we6 we9 we10 we11 we12 we13 we14
i.mx31/i.mx31l advance information, rev. 2.3 38 freescale semiconductor electrical characteristics figure 28. synchronous memory timing diagram for two non-sequential read accesses? wsc=2, sync=1, dol=0 figure 29. synchronous memory timing diagram for burst write access? bcs=1, wsc=4, sync=1, dol=0, psr=1 last valid addr address v1 address v2 v1 v1+2 v2 v2+2 bclk addr ecb data halfword halfword cs[x] rw lba oe eb [y] halfword halfword we1 we2 we4 we7 we8 we9 we10 we11 we12 we15 we15 we16 we16 we17 we17 we18 we18 we3 last valid addr bclk addr data cs [x] rw lba oe eb [y] ecb address v1 v1 v1+4 v1+12 v1+8 we9 we1 we2 we3 we4 we5 we6 we10 we11 we13 we13 we14 we14 we17 we18 we12
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 39 figure 30. muxed a/d mode timing diagram for asynchronous write access? wsc=7, lba=1, lbn=1, lah=1 figure 31. muxed a/d mode timing diag ram for asynchronous read access? wsc=7, lba=1, lbn=1, lah=1, oea=7 4.3.9.3 esdctl electrical specifications figure 32 , figure 33 , figure 34 , figure 35 , figure 36 , and figure 37 depict the timings pertaining to the esdctl module, which interfaces mobile ddr or sdr sdram. table 30 , table 31 , table 32 , table 33 , table 34 , and table 35 list the timing parameters. write bclk addr/ rw lba oe eb [y] cs [x] address v1 write data last valid addr m_data we1 we2 we3 we4 we6 we5 we9 we10 we11 we12 we13 we14 bclk addr/ rw lba oe eb [y] cs [x] address v1 read data last valid addr m_data we2 we3 we4 we11 we12 we7 we8 we9 we10 we15 we16 we1
i.mx31/i.mx31l advance information, rev. 2.3 40 freescale semiconductor electrical characteristics figure 32. sdram read cycle timing diagram table 30. ddr/sdr sdram re ad cycle timing parameters id parameter symbol min max unit sd1 sdram clock high-level width tch 3.4 4.1 ns sd2 sdram clock low-level width tcl 3.4 4.1 ns sd3 sdram clock cycle time tck 7.5 ? ns sd4 cs, ras, cas, we, dqm, cke setup time tcms 2.0 ? ns sd5 cs, ras, cas, we, dqm, cke hold time tcmh 1.8 ? ns sd6 address setup time tas 2.0 ? ns sd7 address hold time tah 1.8 ? ns sd8 sdram access time tac ? 6.47 ns sdclk we addr dq dqm col/ba data cs cas ras note: cke is high during the read/write cycle. sd4 sd1 sd3 sd2 sd4 sd4 sd4 sd4 sd5 sd5 sd5 sd5 sd5 sd6 sd7 sd10 sd8 sd9 sdclk row/ba
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 41 note sdr sdram clk parameters are being measured from the 50% point?that is, high is defined as 50% of signal value and low is defined as 50% of signal value. sd1 + sd2 does not exceed 7.5 ns for 133 mhz. note the timing parameters are similar to the ones used in sdram data sheets?that is, table 30 indicates sdram requireme nts. all output signals are driven by the esdctl at the negative edge of sdclk and the parameters are measured at maximum memory frequency. sd9 data out hold time 1 toh 1.8 ? ns sd10 active to read/write command period trc 10 ? clock 1 timing parameters are relevant only to sdr sdram. for the specific ddr sdram data re lated timing parameters, see ta bl e 3 4 and ta b l e 3 5 . table 30. ddr/sdr sdram read cycl e timing parameters (continued) id parameter symbol min max unit
i.mx31/i.mx31l advance information, rev. 2.3 42 freescale semiconductor electrical characteristics figure 33. sdr sdram write cycle timing diagram table 31. sdr sdram wr ite timing parameters id parameter symbol min max unit sd1 sdram clock high-level width tch 3.4 4.1 ns sd2 sdram clock low-level width tcl 3.4 4.1 ns sd3 sdram clock cycle time tck 7.5 ? ns sd4 cs, ras, cas, we, dqm, cke setup time tcms 2.0 ? ns sd5 cs, ras, cas, we, dqm, cke hold time tcmh 1.8 ? ns sd6 address setup time tas 2.0 ? ns sd7 address hold time tah 1.8 ? ns sd11 precharge cycle period 1 trp 1 4 clock sd12 active to read/write command delay 1 trcd 1 8 clock cs cas we ras addr dq dqm ba row / ba col/ba data sd4 sd4 sd4 sd4 sd5 sd5 sd5 sd5 sd7 sd6 sd12 sd13 sd14 sd11 sdclk sd1 sd3 sd2 sdclk
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 43 note sdr sdram clk parameters are being measured from the 50% point?that is, high is defined as 50% of signal value and low is defined as 50% of signal value. note the timing parameters are similar to the ones used in sdram data sheets?that is, table 31 indicates sdram requireme nts. all output signals are driven by the esdctl at the negative edge of sdclk and the parameters are measured at maximum memory frequency. figure 34. sdram refresh timing diagram sd13 data setup time tds 2.0 ? ns sd14 data hold time tdh 1.3 ? ns 1 sd11 and sd12 are determined by sdram controller register settings. table 31. sdr sdram write timi ng parameters (continued) id parameter symbol min max unit cs cas we ras addr ba row/ba sd6 sd7 sd11 sd10 sd10 sdclk sd1 sd2 sdclk sd3
i.mx31/i.mx31l advance information, rev. 2.3 44 freescale semiconductor electrical characteristics note sdr sdram clk parameters are being measured from the 50% point?that is, high is defined as 50% of signal value and low is defined as 50% of signal value. note the timing parameters are similar to the ones used in sdram data sheets?that is, table 32 indicates sdram requireme nts. all output signals are driven by the esdctl at the negative edge of sdclk and the parameters are measured at maximum memory frequency. table 32. sdram refresh timing parameters id parameter symbol min max unit sd1 sdram clock high-level width tch 3.4 4.1 ns sd2 sdram clock low-level width tcl 3.4 4.1 ns sd3 sdram clock cycle time tck 7.5 ? ns sd6 address setup time tas 1.8 ? ns sd7 address hold time tah 1.8 ? ns sd10 precharge cycle period 1 1 sd10 and sd11 are determined by sdra m controller register settings. trp 1 4 clock sd11 auto precharge command period 1 trc 2 20 clock
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 45 figure 35. sdram self-refresh cycle timing diagram note the clock will continue to run unle ss both ckes are low. then the clock will be stopped in low state. table 33. sdram self-refre sh cycle timing parameters id parameter symbol min max unit sd16 cke output delay time tcks 1.8 ? ns sdclk cs cas ras addr ba we cke don?t care sd16 sd16
i.mx31/i.mx31l advance information, rev. 2.3 46 freescale semiconductor electrical characteristics figure 36. mobile ddr sdram write cycle timing diagram note sdram clk and dqs related paramete rs are being measured from the 50% point?that is, high is defined as 50% of signal value and low is defined as 50% of signal value. note the timing parameters are similar to the ones used in sdram data sheets?that is, table 34 indicates sdram requireme nts. all output signals are driven by the esdctl at the negative edge of sdclk and the parameters are measured at maximum memory frequency. table 34. mobile ddr sdram wr ite cycle timing parameters 1 1 test condition: measured using delay line 5 pr ogrammed as follows: esdcdly5[15:0] = 0x0703. id parameter symbol min max unit sd17 dq & dqm setup ti me to dqs tds 0.95 ? ns sd18 dq & dqm hold time to dqs tdh 0.95 ? ns sd19 write cycle dqs falling edge to sdclk output delay time. tdss 1.8 ? ns sd20 write cycle dqs falling edge to sdclk output hold time. tdsh 1.8 ? ns sdclk sdclk dqs (output) dq (output) dqm (output) data data data data data data data data dm dm dm dm dm dm dm dm sd17 sd17 sd17 sd17 sd18 sd18 sd18 sd18 sd19 sd20
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 47 figure 37. mobile ddr sdram dq versus dqs and sdclk read cycle timing diagram note sdram clk and dqs related paramete rs are being measured from the 50% point?that is, high is defined as 50% of signal value and low is defined as 50% of signal value. note the timing parameters are similar to the ones used in sdram data sheets?that is, table 35 indicates sdram requireme nts. all output signals are driven by the esdctl at the negative edge of sdclk and the parameters are measured at maximum memory frequency. 4.3.10 etm electrical specifications etm is an arm protocol. the timing specifications in this section are given as a guide for a tpa that supports traceclk fre quencies up to 133 mhz. figure 38 depicts the traceclk timings of etm, and table 36 lists the timing parameters. figure 38. etm traceclk timing diagram table 35. mobile ddr sdram read cycle timing parameters id parameter symbol min max unit sd21 dqs - dq skew (defines the data valid window in read cycles related to dqs). tdqsq ? 0.85 ns sd22 dqs dq hold time from dqs tqh 2.3 ? ns sd23 dqs output access time from sdclk posedge tdqsck ? 6.7 ns sdclk sdclk dqs (input) dq (input) data data data data data data data data sd23 sd21 sd22
i.mx31/i.mx31l advance information, rev. 2.3 48 freescale semiconductor electrical characteristics figure 39 depicts the setup and hold require ments of the trace data pins with respect to traceclk, and table 37 lists the timing parameters. figure 39. trace data timing diagram 4.3.10.1 half-rate clocking mode when half-rate clocking is used, the trace data signals are sample d by the tpa on both the rising and falling edges of traceclk, where traceclk is half the frequency of the clock shown in figure 39 . 4.3.11 fir electrical specifications fir implements asynchronous infrared protoc ols (fir, mir) that are defined by irda ? (infrared data association). refer to http://www.irda .org for details on fir and mir protocols. 4.3.12 fusebox electrical specifications table 36. etm traceclk timing parameters id parameter min max unit t cyc clock period frequency dependent ? ns t wl low pulse width 2 ? ns t wh high pulse width 2 ? ns t r clock and data rise time ? 3 ns t f clock and data fall time ? 3 ns table 37. etm trace data timing parameters id parameter min max unit t s data setup 2 ? ns t h data hold 1 ? ns table 38. fusebox timing characteristics ref. num description symbol m inimum typical maximum units 1 program time for efuse 1 1 the program length is defined by the value defined in the epm_pgm_length[2:0] bits of the iim module. the value to program is based on a 32 khz clock source (4 * 1/32 khz = 125 s) t program 125 ? ? s
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 49 4.3.13 i 2 c electrical specifications this section describes the electrical information of the i 2 c module. 4.3.13.1 i 2 c module timing figure 40 depicts the timing of i 2 c module. table 39 lists the i 2 c module timing parame ters where the i/o supply is 2.7 v. 1 figure 40. i 2 c bus timing diagram table 39. i 2 c module timing parameters?i 2 c pin i/o supply=2.7 v id parameter standard mode fast mode unit min max min max ic1 i2clk cycle time 10 ? 2.5 ? s ic2 hold time (repeated) start condition 4.0 ? 0.6 ? s ic3 set-up time for stop condition 4.0 ? 0.6 ? s ic4 data hold time 0 1 1 a device must internally provide a hold time of at least 300 ns for i2dat signal in order to bridge the undefined region of the falling edge of i2clk. 3.45 2 2 the maximum hold time has to be met only if the device does not stretch the low period (id ic6) of the i2clk signal. 0 1 0.9 2 s ic5 high period of i2clk clock 4.0 ? 0.6 ? s ic6 low period of the i2clk clock 4.7 ? 1.3 ? s ic7 set-up time for a repeated start condition 4.7 ? 0.6 ? s ic8 data set-up time 250 ? 100 3 3 a fast-mode i 2 c-bus device can be used in a standard-mode i 2 c-bus system, but the requirement of set-up time (id ic7) of 250 ns must then be met. this will automatically be the case if the device does not stretch the low period of the i2clk signal. if such a device does stretch the low period of the i2clk signal, it must output the next data bit to the i2dat line max_rise_t ime (id no ic10) + data_setup_time (id no ic8) = 1000 + 250 = 1250 ns (according to the standard-mode i 2 c-bus specification) before the i2clk line is released. ?ns ic9 bus free time between a stop and start condition 4.7 ? 1.3 ? s ic10 rise time of both i2dat and i2clk signals ? 1000 20+0.1c b 4 4 c b = total capacitance of one bus line in pf. 300 ns ic11 fall time of both i2dat and i2clk signals ? 300 20+0.1c b 4 300 ns ic12 capacitive load for each bus line (c b ) ? 400 ? 400 pf ic10 ic11 ic9 ic2 ic8 ic4 ic7 ic3 ic6 ic10 ic5 ic11 start stop start start i2dat i2clk ic1
i.mx31/i.mx31l advance information, rev. 2.3 50 freescale semiconductor electrical characteristics 4.3.14 ipu?sensor interfaces 4.3.14.1 supported camera sensors table 40 lists the known supported camera se nsors at the time of publication. 4.3.14.2 functional description there are three timing modes supported by the ipu. 4.3.14.2.1 pseudo bt.656 video mode smart camera sensors, which include imaging processing, usua lly support video mode transfer. they use an embedded timing syntax to replace the sens b_vsync and sensb_hsync signals. the timing syntax is defined by the bt.656 standard. this operation mode follows the recommendations of itu bt.656 specifications. the only control signal used is sensb_pix_clk. start-of-f rame and active-line signals are embedded in the data stream. an active line starts with a sav code and ends with a eav code. in some ca ses, digital blanking is inserted in between eav and sav code. the csi decodes and filters out the timing-coding from the data stream, thus recovering sensb_vsync and sensb_hsync signals for internal use. table 40. supported camera sensors 1 1 freescale semiconductor does not recommend one supplier over another and in no way suggests that these are the only camera suppliers. vendor model conexant cx11646, cx20490 2 , cx20450 2 2 these sensors not validated at time of publication. agilant hdcp-2010, adcs-1021 2 , adcs-1021 2 toshiba tc90a70 icmedia icm202a, icm102 2 imagic im8801 transchip tc5600, tc5600j, tc5640, tc5700, tc6000 fujitsu mb86s02a micron mi-soc-0133 matsushita mn39980 stmicro w6411, w6500, w6501 2 , w6600 2 , w6552 2 , stv0974 2 omnivision ov7620, ov6630 sharp lz0p3714 (ccd) motorola mc30300 (python) 2 , scm20014 2 , scm20114 2 , scm22114 2 , scm20027 2 national semiconductor lm9618 2
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 51 4.3.14.2.2 gated clock mode the sensb_vsync, sensb_hsync, and sensb_pix_ clk signals are used in this mode. see figure 41 . figure 41. gated clock mode timing diagram a frame starts with a rising edge on sensb_vsync (all the timings corr espond to straight polarity of the corresponding signals). then sensb_hsync goes to hi gh and hold for the entire line. pixel clock is valid as long as sensb_hsync is high. data is latc hed at the rising edge of the valid pixel clocks. sensb_hsync goes to low at the end of line. pixe l clocks then become invalid and the csi stops receiving data from the stream. fo r next line the sensb_hsync timing repeats. for next frame the sensb_vsync timing repeats. 4.3.14.2.3 non-gated clock mode the timing is the same as the ga ted-clock mode (described in section 4.3.14.2.2, ?gated clock mode ? on page 51 ), except for the sensb_hsync signal, which is not used. see figure 42 . all incoming pixel clocks are valid and will cause data to be latche d into the input fifo. the sensb_pix_clk signal is inactive (states low) until valid data is going to be transmitted over the bus. figure 42. non-gated clock mode timing diagram sensb_vsync sensb_hsync sensb_pix_clk sensb_data[9:0] invalid 1st byte n+1th frame invalid 1st byte nth frame active line start of frame sensb_vsync sensb_pix_clk sensb_data[7:0] invalid 1st byte n+1th frame invalid 1st byte nth frame start of frame
i.mx31/i.mx31l advance information, rev. 2.3 52 freescale semiconductor electrical characteristics the timing described in figure 42 is that of a motorola sensor. some other sensors may have a slightly different timing. the csi can be programmed to s upport rising/falling-edge triggered sensb_vsync; active-high/low sensb_hsync; and risi ng/falling-edge trigge red sensb_pix_clk. 4.3.14.3 electrical characteristics figure 43 depicts the sensor interface timing, and table 41 lists the timing parameters. figure 43. sensor interface timing diagram 4.3.15 ipu ? display interfaces 4.3.15.1 supported display components table 42 lists the known supported display com ponents at the time of publication. table 41. sensor interface timing parameters id parameter symbol min. max. units ip1 sensor input clock frequency fmck 0.01 133 mhz ip2 data and control setup time tsu 5 ? ns ip3 data and control holdup time thd 3 ? ns ip4 sensor output (pixel) clock frequency fpck 0.01 133 mhz sensb_mclk ip3 sensb_data, sensb_vsync, ip2 1/ip1 1/ip4 sensb_pix_clk (sensor input) (sensor output) sensb_hsync
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 53 4.3.15.2 synchronous interfaces 4.3.15.2.1 interface to active matrix tft lcd panels, func tional description figure 44 depicts the lcd interface timing for a generic active matrix color tft panel. in this figure signals are shown with negative pol arity. the sequence of events for active matrix interface timing is: ? dispb_d3_clk latches data into the panel on its negative edge (when positive polarity is selected). in active mode, di spb_d3_clk runs continuously. ? dispb_d3_hsync causes the panel to start a new line. ? dispb_d3_vsync causes the panel to start a ne w frame. it always encompasses at least one hsync pulse. table 42. supported display components 1 1 freescale semiconductor does not recommend one supplier over another and in no way sugges ts that these are the only display component suppliers. type vendor model tft displays (memory-less) sharp (hr-tft super mobile lcd family) lq035q7 db02, lm019lc1sxx samsung (qcif and qvga tft modules for mobile phones) lts180s1-hf1, lts180s3-hf1, lts350q1-pe1, lts350q1-pd1, lts220q1-he1 2 2 these display components not valid ated at time of publication. toshiba (ltm series) ltm022p806 2 , ltm04c380k 2 , ltm018a02a 2 , ltm020p332 2 , ltm021p337 2 , ltm019p334 2 , ltm022a783 2 , ltm022a05zz 2 nec nl6448bc20-08e, nl8060bc31-27 display controllers epson s1 d15xxx series, s1d19xxx se ries, s1d13713, s1d13715 solomon systech ssd1301 (oled), ssd1828 (ldcd) hitachi hd66766, hd66772 ati w2300 smart display modules epson l1f10043 t 2 , l1f10044 t 2 , l1f10045 t 2 , l2d22002 2 , l2d20014 2 , l2f50032 2 , l2d25001 t 2 hitachi 120 160 65k/4096 c-stn (# 3284 ltd-1398-2) based on hd 66766 controller densitron europe ltd all displays with mpu 80/68k series interface and serial peripheral interface sharp lm019lc1sxx sony acx506akm digital video encoders (for tv) analog devices adv7174/7179 crystal (cirrus logic) cs49xx series focus fs453/4
i.mx31/i.mx31l advance information, rev. 2.3 54 freescale semiconductor electrical characteristics ? dispb_d3_drdy acts like an out put enable signal to the crt display. this output enables the data to be shifted onto the display. when disa bled, the data is invalid and the trace is off. figure 44. interface timing diagram for tft (active matrix) panels 4.3.15.2.2 interface to active matrix tft lcd panels, electri cal characteristics figure 45 depicts the horizontal timing (tim ing of one line), including bot h the horizontal sync pulse and the data. all figure parameters s hown are programmable. the timing im ages correspond to inverse polarity of the dispb_d3_clk signal and active-low pol arity of the dispb_d3_h sync, dispb_d3_vsync and dispb_d3_drdy signals. figure 45. tft panels timing di agram?horizontal sync pulse figure 46 depicts the vertical timing (timing of one frame). all figure parameters shown are programmable. dispb_d3_clk 123 m m-1 dispb_d3_hsync dispb_d3_vsync dispb_d3_hsync line 1 line 2 line 3 line 4 line n-1 line n dispb_d3_drdy dispb_d3_data dispb_d3_hsync dispb_d3_drdy dispb_d3_data dispb_d3_clk ip7 ip9 ip10 ip8 start of line ip5 ip6
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 55 figure 46. tft panels timing diagram?vertical sync pulse table 43 shows timing parameters of signals presented in figure 45 and figure 46 . table 43. synchronous display interface timing parameters?pixel level id parameter symbol value units ip5 display interface clock period tdicp tdicp 1 1 display interface clock period immediate value. display interface clock period average value. ns ip6 display pixel clock period tdpcp (disp3_if_clk_cnt_d+1) * tdicp ns ip7 screen width tsw (screen_width+1) * tdpcp ns ip8 hsync width thsw (h_sync_width+1) * tdpcp ns ip9 horizontal blank interval 1 thbi1 bgxp * tdpcp ns ip10 horizontal blank interval 2 thbi2 (screen_width - bgxp - fw) * tdpcp ns ip11 hsync delay thsd h_sync_delay * tdpcp ns ip12 screen height tsh (screen_height+1) * tsw ns ip13 vsync width tvsw if v_sync_width_l = 0 than (v_sync_width+1) * tdpcp else (v_sync_width+1) * tsw ns ip14 vertical blank interval 1 tvbi1 bgyp * tsw ns ip15 vertical blank interval 2 tvbi2 (screen_height - bgyp - fh) * tsw ns ip14 dispb_d3_vsync dispb_d3_hsync dispb_d3_drdy start of frame e n d o f f rame ip12 ip15 ip13 ip11 tdicp t hsp_clk disp3_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - ? for integer disp3_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - , t hsp_clk floor disp3_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - 0.5 0.5 + ?? ?? ? for fractional disp3_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - , ? ? ? ? ? ? ? = tdicp t hsp_clk disp3_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - ? =
i.mx31/i.mx31l advance information, rev. 2.3 56 freescale semiconductor electrical characteristics note hsp_clk is the high-speed port clock, which is the input to the image processing unit (ipu). it s frequency is controlled by the clock control module (ccm) settings. the hsp_clk fre quency must be greater than or equal to the ahb clock frequency. the screen_width, screen_h eight, h_sync_width, v_sy nc_width, bgxp, bgyp and v_sync_width_l parameters are programme d via the sdc_hor_conf, sdc_ver_conf, sdc_bg_pos registers. the fw and fh parame ters are programmed for the corresponding dma channel. the disp3_if_clk_per_wr, hsp_clk_ period and disp3_if_clk_cnt_d parameters are programmed via the di_disp3_time_c onf, di_hsp_clk_per and di_disp_acc_cc registers. figure 47 depicts the synchronous display in terface timing for access level, and table 44 lists the timing parameters. the disp3_if_clk_do wn_wr and disp3_if_clk_up_wr parameters are set via the di_disp3_time_conf register. figure 47. synchronous display interface timing diagram?access level table 44. synchronous display interface timing parameters?access level id parameter symbol min typ 1 1 the exact conditions have not been finalized, but will likely matc h the current customer requirem ent for their specific display . these conditions may be device specific. max units ip16 display interface clock lo w time tckl tdicd-tdicu-1.5 tdicd 2 -tdicu 3 2 display interface clock down time tdicd-tdicu+1.5 ns ip17 display interface clock high time tckh tdicp-tdicd+ tdicu-1.5 tdicp-tdicd+tdicu tdicp-tdicd+tdicu+1.5 ns ip18 data setup time tdsu tdicd-3.5 tdicu ? ns ip19 data holdup time tdhd tdicp-tdicd-3.5 tdicp-tdicu ? ns ip20 control signals setup time to display interface clock tcsu tdicd-3.5 tdicu ? ns ip19 dispb_d3_clk dispb_data ip18 ip20 dispb_d3_vsync ip17 ip16 dispb_d3_drdy dispb_d3_hsync other controls tdicd 1 2 -- - t hsp_clk ceil 2 disp3_if_clk_down_wr ? hsp_clk_period -------------------------------------------------------------------------------- - ? =
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 57 4.3.15.3 interface to sharp hr-tft panels figure 48 depicts the sharp hr-tft panel interface timing, and table 45 lists the timing parameters. the cls_rise_delay, cls_fall_delay, ps_fall_delay, ps_rise_delay, rev_toggle_delay parameters are de fined in the sdc_sharp_conf_1 and sdc_sharp_conf_2 registers. for other sharp interface timing characteristics, refer to section 4.3.15.2.2, ?interface to active matrix tft lcd panels, el ectrical characteristics? on page 54. the timing images correspond to strai ght polarity of the sharp signals. figure 48. sharp hr-tft panel interface timing diagram?pixel level 3 display interface clock up time where ceil(x) rounds the elements of x to the nearest integers towards infinity. tdicu 1 2 -- - t hsp_clk ceil 2 disp3_if_clk_up_wr ? hsp_clk_period --------------------------------------------------------------------- - ? = d1 d2 dispb_d3_clk dispb_d3_data dispb_d3_spl dispb_d3_hsync dispb_d3_cls dispb_d3_ps dispb_d3_rev 1 dispb_d3_clk period ip26 d320 horizontal timing ip22 ip23 ip25 ip21 ip24 example is drawn with fw+1=320 pixel/line, fh+1=240 lines. spl pulse width is fixed and align ed to the first data of the line. rev toggles every hsync period.
i.mx31/i.mx31l advance information, rev. 2.3 58 freescale semiconductor electrical characteristics 4.3.15.4 synchronous interface to dual-port smart displays functionality and electrical characteristics of the synchronous interf ace to dual-port smart displays are identical to parameters of the synchronous interface. see section 4.3.15.2.2, ?interface to active matrix tft lcd panels, electr ical characteristics ? on page 54 . 4.3.15.4.1 interface to a tv encoder, functional description the interface has an 8-bit data bus, transferring a single 8-bit value (y/u/v) in each cycle. the bits d7?d0 of the value are mapped to bits ld17?ld10 of the data bus, respectively. figure 49 depicts the interface timing, ? the frequency of the clock disp b_d3_clk is 27 mhz (within 10%). ? the dispb_d3_hsync, dispb_d 3_vsync and dispb_d3_drdy signals are active low. ? the transition to the next row is marked by th e negative edge of th e dispb_d3_hsync signal. it remains low for a single clock cycle. ? the transition to the next field/frame is mark ed by the negative edge of the dispb_d3_vsync signal. it remains low for at least one clock cycle. ? at a transition to an odd field (of the next frame), the negative e dges of dispb_d3_vsync and dispb_d3_hsync coincide. ? at a transition to an even field (of the same frame), they do not coincide. ? the active intervals?during wh ich data is transferred?are marked by the dispb_d3_hsync signal being high. table 45. sharp synchronous display interface timing parameters?pixel level id parameter symbol value units ip21 spl rise time tsplr (bgxp - 1) * tdpcp ns ip22 cls rise time tclsr cls_rise_delay * tdpcp ns ip23 cls fall time tclsf cls_fall_delay * tdpcp ns ip24 cls rise and ps fall time tpsf ps_fall_delay * tdpcp ns ip25 ps rise time tpsr ps_rise_delay * tdpcp ns ip26 rev toggle time trev rev_toggle_delay * tdpcp ns
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 59 figure 49. tv encoder interface timing diagram dispb_d3_clk dispb_d3_hsync dispb_data dispb_d3_vsync cb y cr cb y cr y pixel data timing line and field timing - ntsc even field odd field odd field even field 624 621 311 308 line and field timing - pal dispb_d3_hsync dispb_d3_drdy dispb_d3_vsync dispb_d3_hsync dispb_d3_drdy dispb_d3_vsync even field odd field odd field even field 1 523 262 261 dispb_d3_drdy dispb_d3_hsync dispb_d3_drdy dispb_d3_vsync dispb_d3_hsync dispb_d3_vsync 524 525 2 3 4 10 263 264 265 266 267 268 269 273 622 623 625 1 2 23 309 310 312 313 314 336 56 34 316 315 dispb_d3_drdy
i.mx31/i.mx31l advance information, rev. 2.3 60 freescale semiconductor electrical characteristics 4.3.15.4.2 interface to a tv encoder, electrical characteristics the timing characteristics of the tv encoder in terface are identical to the synchronous display characteristics. see section 4.3.15.2.2, ?interface to active matrix tft lcd panels, electrical characteristics ? on page 54 . 4.3.15.5 asynchronous interfaces 4.3.15.5.1 parallel interfaces, functional description the ipu supports the following asynchronous parallel interfaces: ? system 80 interface ? type 1 (sampling with the chip select si gnal) with and without byte enable signals. ? type 2 (sampling with the r ead and write signals) with a nd without byte enable signals. ? system 68k interface ? type 1 (sampling with the chip select si gnal) with or without byte enable signals. ? type 2 (sampling with the r ead and write signals) with or without byte enable signals. for each of four system interf aces, there are three burst modes: 1. burst mode without a separate clock. the burst length is define d by the corresponding parameters of the idmac (when data is tr ansferred from the system me mory) of by the hburst signal (when the mcu directly accesses the display via the slave ahb bu s). for system 80 and system 68k type 1 interfaces, data is sa mpled by the cs signal and other c ontrol signals changes only when transfer direction is changed duri ng the burst. for type 2 interfac es, data is sampled by the wr/rd signals (system 80) or by the enable signal (system 68k) and th e cs signal stays active during the whole burst. 2. burst mode with the separate clock dispb_bc lk. in this mode, data is sampled with the dispb_bclk clock. the cs signal stays active duri ng whole burst transfer. other controls are changed simultaneously with data when the bus state (read, write or wait) is altered. the cs signals and other controls move to non-acti ve state after burst has been completed. 3. single access mode. in this mode, slave ahb and dma burst are broken to single accesses. the data is sampled with cs or other controls acco rding the interface type as described above. all controls (including cs) become non- active for one display interface clock after each access. this mode corresponds to the ati single access mode. both system 80 and system 68k in terfaces are supported for all de scribed modes as depicted in figure 50 , figure 51 , figure 52 , and figure 53 . these timing images correspond to active-low dispb_d#_cs, dispb_d#_wr and di spb_d#_rd signals. additionally, the ipu allows a programmable pause between two burst. the pause is defined in the hsp_clk cycles. it allows to avoi d timing violation between two sequ ential bursts or two accesses to different displays. the range of this pause is from 4 to 19 hsp_clk cycles.
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 61 figure 50. asynchronous parallel system 80 interface (type 1) burst mode timing diagram dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data dispb_bclk dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data burst access mode with sampling by cs signal burst access mode with sampling by separate burst clock (bclk) single access mode (all control signals ar e not active for one display interface clock after each display access)
i.mx31/i.mx31l advance information, rev. 2.3 62 freescale semiconductor electrical characteristics figure 51. asynchronous parallel system 80 interface (type 2) burst mode timing diagram dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data dispb_bclk dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data burst access mode with sampling by wr/rd signals burst access mode with sampling by separate burst clock (bclk) single access mode (all control signals ar e not active for one display interface clock after each display access)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 63 figure 52. asynchronous parallel system 68k interface (type 1) burst mode timing diagram dispb_d#_cs dispb_wr dispb_rd dispb_data dispb_bclk dispb_d#_cs d ispb_par_rs dispb_wr dispb_rd dispb_data dispb_d#_cs dispb_wr dispb_rd dispb_data (read/write) (enable) dispb_par_rs dispb_par_rs (read/write) (enable) (read/write) (enable) burst access mode with sampling by cs signal burst access mode with sampling by separate burst clock (bclk) single access mode (all control signals ar e not active for one display interface clock after each display access)
i.mx31/i.mx31l advance information, rev. 2.3 64 freescale semiconductor electrical characteristics figure 53. asynchronous parallel system 68k interface (type 2) burst mode timing diagram display read operation can be performed with wait states when each read access takes up to 4 display interface clock cycles according to th e disp0_rd_wait_st parameter in the di_disp0_time_conf_3, di_disp1_time_co nf_3, di_disp2_time_conf_3 registers. figure 54 shows timing of the parallel in terface with read wait states. dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data dispb_bclk dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data dispb_d#_cs dispb_par_rs dispb_wr dispb_rd dispb_data (read/write) (enable) (read/write) (enable) (read/write) (enable) burst access mode with sampling by enable signal burst access mode with sampling by separate burst clock (bclk) single access mode (all control signals ar e not active for one display interface clock after each display access)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 65 figure 54. parallel interface ti ming diagram?read wait states 4.3.15.5.2 parallel interfaces , electrical characteristics figure 55 , figure 57 , figure 56 , and figure 58 depict timing of asynchronous parallel interfaces based on the system 80 and system 68k interfaces. table 46 lists the timing parameters at display access level. all timing images are based on active low control signa ls (signals polarity is controlled via the di_disp_sig_pol register). write operation read operation dispb_d#_cs dispb_rd dispb_wr dispb_par_rs dispb_d#_cs dispb_rd dispb_wr dispb_par_rs dispb_data dispb_d#_cs dispb_rd dispb_wr dispb_par_rs dispb_data dispb_data disp0_rd_wait_st=00 disp0_rd_wait_st=01 disp0_rd_wait_st=10
i.mx31/i.mx31l advance information, rev. 2.3 66 freescale semiconductor electrical characteristics figure 55. asynchronous parallel system 80 interface (type 1) timing diagram ip28, ip27 read data ip32, ip30 ip37 ip38 dispb_par_rs dispb_data dispb_data dispb_wr (write_l) (input) (output) ip35, ip33 ip36, ip34 ip31, ip29 ip40 ip39 ip46,ip44 ip47 ip45, ip43 ip42, ip41 dispb_rd (read_l) dispb_d#_cs dispb_data[16] dispb_data[17] read point (write_h) (read_h)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 67 figure 56. asynchronous parallel system 80 interface (type 2) timing diagram ip28, ip27 read data ip32, ip30 dispb_par_rs dispb_data dispb_data dispb_wr (write_l) (input) (output) ip36, ip34 ip31, ip29 ip40 ip39 ip47 ip45, ip43 ip42, ip41 dispb_rd (read_l) dispb_d#_cs dispb_data[16] dispb_data[17] (write_h) (read_h) ip38 ip35, ip33 ip37 read point ip46,ip44
i.mx31/i.mx31l advance information, rev. 2.3 68 freescale semiconductor electrical characteristics figure 57. asynchronous parallel system 68k interface (type 1) timing diagram ip28, ip27 read data ip32, ip30 ip37 ip38 dispb_par_rs dispb_data dispb_data dispb_wr (input) (output) ip35,ip33 ip36, ip34 ip31, ip29 ip40 ip39 ip47 ip45, ip43 ip42, ip41 dispb_rd (enable_l) dispb_d#_cs (read/write) dispb_data[17] (enable_h) read point ip46,ip44
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 69 figure 58. asynchronous parallel system 68k interface (type 2) timing diagram table 46. asynchronous parallel interface timing parameters?access level id parameter symbol min. typ. 1 max. units ip27 read system cycle time tcycr tdicpr-1.5 tdicpr 2 tdicpr+1.5 ns ip28 write system cycle time tcycw tdicpw-1.5 tdicpw 3 tdicpw+1.5 ns ip29 read low pulse width trl tdicdr-tdicur-1.5 tdicdr 4 -tdicur 5 tdicdr-tdicur+1.5 ns ip30 read high pulse width trh tdicpr-tdicdr+tdicur-1.5 tdicpr-tdicdr+ tdicur tdicpr-tdicdr+tdicur+1.5 ns ip31 write low pulse width twl tdicdw-tdicuw-1.5 tdicdw 6 -tdicuw 7 tdicdw-tdicuw+1.5 ns ip32 write high pulse width twh tdicpw-tdicdw+ tdicuw-1.5 tdicpw-tdicdw+ tdicuw tdicpw-tdicdw+ tdicuw+1.5 ns ip33 controls setup time for read tdcsr tdicur-1.5 tdicur ? ns ip34 controls hold time for read td chr tdicpr-tdicdr-1.5 tdicpr-tdicdr ? ns ip35 controls setup time for write tdcsw tdicuw-1.5 tdicuw ? ns ip28, ip27 read data ip32, ip30 ip37 ip38 dispb_par_rs dispb_data dispb_data dispb_wr (input) (output) ip35,ip33 ip36, ip34 ip31, ip29 ip40 ip39 ip45, ip43 ip42, ip41 dispb_rd (enable_l) dispb_d#_cs (read/write) dispb_data[17] (enable_h) read point ip46,ip44 ip47
i.mx31/i.mx31l advance information, rev. 2.3 70 freescale semiconductor electrical characteristics ip36 controls hold time for write tdchw tdicpw-tdicdw-1.5 tdicpw-tdicdw ? ns ip37 slave device data delay 8 tr a c c 0 ? t d r p 9 -tlbd 10 -tdicur-1.5 ns ip38 slave device data hold time 8 troh tdrp-tlbd-tdicdr+1.5 ? tdicpr-tdicdr-1.5 ns ip39 write data setup time tds tdicdw-1.5 tdicdw ? ns ip40 write data hold time tdh tdicp w-tdicdw-1.5 tdicpw-tdicdw ? ns ip41 read period 2 tdicpr tdicpr-1.5 tdicpr tdicpr+1.5 ns ip42 write period 3 tdicpw tdicpw-1.5 tdicpw tdicpw+1.5 ns ip43 read down time 4 tdicdr tdicdr-1.5 tdicdr tdicdr+1.5 ns ip44 read up time 5 tdicur tdicur-1.5 tdicur tdicur+1.5 ns ip45 write down time 6 tdicdw tdicdw-1.5 tdicdw tdicdw+1.5 ns ip46 write up time 7 tdicuw tdicuw-1.5 tdicuw tdicuw+1.5 ns ip47 read time point 9 tdrp tdrp-1.5 tdrp tdrp+1.5 ns 1 the exact conditions have not been finalized, but will likely matc h the current customer requirem ent for their specific display . these conditions may be device specific. 2 display interface clock period value for read: 3 display interface clock period value for write: 4 display interface clock down time for read: 5 display interface clock up time for read: 6 display interface clock down time for write: 7 display interface clock up time for write: 8 this parameter is a requirement to the display connected to the ipu 9 data read point 10 loopback delay tlbd is the cumulative propagation delay of read controls and read data. it incl udes an ipu output delay, a device-level output delay, board delays, a device-level input delay, an ipu input delay. this value is device specific. table 46. asynchronous parallel interface timing parameters?access level (continued) id parameter symbol min. typ. 1 max. units tdicpr t hsp_clk ceil ? disp#_if_clk_per_rd hsp_clk_period ---------------------------------------------------------------- = tdicpw t hsp_clk ceil ? disp#_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - = tdicdr 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_down_rd ? hsp_clk_period ------------------------------------------------------------------------------- ? = tdicur 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_up_rd ? hsp_clk_period -------------------------------------------------------------------- ? = tdicdw 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_down_wr ? hsp_clk_period -------------------------------------------------------------------------------- - ? = tdicuw 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_up_wr ? hsp_clk_period --------------------------------------------------------------------- - ? = tdrp t hsp_clk ceil disp#_read_en hsp_clk_period -------------------------------------------------- ? =
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 71 the disp#_if_clk_per_wr, disp#_if_clk_per_rd, hsp_clk_period, disp#_if_clk_down_wr, disp#_if_cl k_up_wr, disp#_if_clk_down_rd, disp#_if_clk_up_rd and disp#_read_en parameters are programmed via the di_disp#_time_conf_1, di_disp#_time_co nf_2 and di_hsp_clk_per registers. 4.3.15.5.3 serial interfaces , functional description the ipu supports the following type s of asynchronous serial interfaces: ? 3-wire (with bidirectional data line) ? 4-wire (with separate da ta input and output lines) ? 5-wire type 1 (with sampli ng rs by the serial clock) ? 5-wire type 2 (with sampling rs by the chip select signal) figure 59 depicts timing of the 3-wire serial interface. the timi ng images correspond to active-low dispb_d#_cs signal and the straight pol arity of the dispb_sd_d_clk signal. for this interface, a bidirect ional data line is used outside the devi ce. the ipu still uses separate input and output data lines (ipp_ind_dispb_sd_d and i pp_do_dispb_sd_d). the i/o mux should provide joining the internal data lines to the bidirectional external line according to the ipp_obe_dispb_sd_d signal provided by the ipu. each data transfer can be preced ed by an optional preamble with pr ogrammable length and contents. the preamble is followed by read/write (rw) and addr ess (rs) bits. th e order of the these bits is programmable. the rw bit can be disabled. the follow ing data can consist of one word or of a whole burst. the interface para meters are controlled by the di_ser _disp1_conf and di_ser_disp2_conf registers. figure 59. 3-wire serial interface timing diagram figure 60 depicts timing of the 4-wi re serial interface. for this interf ace, there are separate input and output data lines both inside and outside the device. preamble dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw rs input or output data d7 d6 d5 d4 d3 d2 d1 d0 1 display if clock cycle 1 display if clock cycle
i.mx31/i.mx31l advance information, rev. 2.3 72 freescale semiconductor electrical characteristics figure 60. 4-wire serial interface timing diagram figure 61 depicts timing of the 5-wi re serial interface (type 1). for this interface, a separate rs line is added. when a burst is transmitted within single active chip select interval, the rs can be changed at boundaries of words. preamble dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw rs output data d7 d6 d5 d4 d3 d2 d1 d0 dispb_sd_d (output) (input) preamble dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw rs input data dispb_sd_d d7 d6 d5 d4 d3 d2 d1 d0 (output) (input) write read 1 display if clock cycle 1 display if clock cycle 1 display if clock cycle 1 display if clock cycle
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 73 figure 61. 5-wire serial interface (type 1) timing diagram preamble dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw d7 d6 d5 d4 d3 d2 d1 d0 dispb_sd_d (output) (input) dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw dispb_sd_d d7 d6 d5 d4 d3 d2 d1 d0 (output) (input) write read dispb_ser_rs dispb_ser_rs 1 display if clock cycle 1 display if clock cycle output data 1 display if clock cycle 1 display if clock cycle preamble input data
i.mx31/i.mx31l advance information, rev. 2.3 74 freescale semiconductor electrical characteristics figure 62 depicts timing of the 5-wi re serial interface (type 2). for this interface, a separate rs line is added. when a burst is transmitted within single active chip select interval, the rs can be changed at boundaries of words. figure 62. 5-wire serial interface (type 2) timing diagram preamble dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw output data d7 d6 d5 d4 d3 d2 d1 d0 dispb_sd_d (output) (input) preamble dispb_d#_cs dispb_sd_d_clk dispb_sd_d rw input data dispb_sd_d d7 d6 d5 d4 d3 d2 d1 d0 (output) (input) write read dispb_ser_rs dispb_ser_rs 1 display if clock cycle 1 display if clock cycle 1 display if clock cycle 1 display if clock cycle 1 display if clock cycle 1 display if clock cycle
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 75 4.3.15.5.4 serial interfaces, electrical characteristics figure 63 depicts timing of th e serial interface. table 47 lists the timing parameters at display access level. figure 63. asynchronous serial interface timing diagram table 47. asynchronous serial interface timing parameters?access level id parameter symbol min. typ. 1 max. units ip48 read system cycle time tcycr tdicpr-1.5 tdicpr 2 tdicpr+1.5 ns ip49 write system cycle time tcycw tdicpw-1.5 tdicpw 3 tdicpw+1.5 ns ip50 read clock low pulse width trl tdicdr-tdicur-1.5 tdicdr 4 -tdicur 5 tdicdr-tdicur+1.5 ns ip51 read clock high pulse width trh tdicpr-tdicdr+tdicur-1.5 tdicpr-tdicdr+ tdicur tdicpr-tdicdr+tdicur+1.5 ns ip52 write clock low pulse width twl tdicdw-tdicuw-1.5 tdicdw 6 -tdicuw 7 tdicdw-tdicuw+1.5 ns ip53 write clock high pulse width twh tdicpw-tdicdw+ tdicuw-1.5 tdicpw-tdicdw+ tdicuw tdicpw-tdicdw+ tdicuw+1.5 ns ip54 controls setup time for read tdcsr tdicur-1.5 tdicur ? ns ip55 controls hold time for read tdchr tdicpr-tdicdr-1.5 tdicpr-tdicdr ? ns ip49, ip48 read data ip51, ip53 ip58 ip59 dispb_ser_rs dispb_data dispb_data (input) (output) ip56,ip54 ip57, ip55 ip50, ip52 ip61 ip60 ip67,ip65 ip47 ip64, ip66 ip62, ip63 dispb_sd_d_clk read point
i.mx31/i.mx31l advance information, rev. 2.3 76 freescale semiconductor electrical characteristics ip56 controls setup time for write tdcsw tdicuw-1.5 tdicuw ? ns ip57 controls hold time for write tdchw tdicpw-tdicdw-1.5 tdicpw-tdicdw ? ns ip58 slave device data delay 8 tr a c c 0 ? t d r p 9 -tlbd 10 -tdicur-1.5 ns ip59 slave device data hold time 8 troh tdrp-tlbd-tdicdr+1.5 ? tdicpr-tdicdr-1.5 ns ip60 write data setup time tds tdicdw-1.5 tdicdw ? ns ip61 write data hold time tdh tdi cpw-tdicdw-1.5 tdicpw-tdicdw ? ns ip62 read period 2 tdicpr tdicpr-1.5 tdicpr tdicpr+1.5 ns ip63 write period 3 tdicpw tdicpw-1.5 tdicpw tdicpw+1.5 ns ip64 read down time 4 tdicdr tdicdr-1.5 tdicdr tdicdr+1.5 ns ip65 read up time 5 tdicur tdicur-1.5 tdicur tdicur+1.5 ns ip66 write down time 6 tdicdw tdicdw-1.5 tdicdw tdicdw+1.5 ns ip67 write up time 7 tdicuw tdicuw-1.5 tdicuw tdicuw+1.5 ns ip68 read time point 9 tdrp tdrp-1.5 tdrp tdrp+1.5 ns 1 the exact conditions have not been finalized, but will likely match the current customer requiremen t for their specific display . these conditions may be device specific. 2 display interface clock period value for read: 3 display interface clock period value for write: 4 display interface clock down time for read: 5 display interface clock up time for read: 6 display interface clock down time for write: 7 display interface clock up time for write: 8 this parameter is a requirement to the display connected to the ipu. 9 data read point: 10 loopback delay tlbd is the cumulative propagation delay of read controls and read data. it incl udes an ipu output delay, a device-level output delay, board delays, a device-level input delay, an ipu input delay. this value is device specific. table 47. asynchronous serial interface timing parameters?access level (continued) id parameter symbol min. typ. 1 max. units tdicpr t hsp_clk ceil ? disp#_if_clk_per_rd hsp_clk_period ---------------------------------------------------------------- = tdicpw t hsp_clk ceil ? disp#_if_clk_per_wr hsp_clk_period ----------------------------------------------------------------- - = tdicdr 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_down_rd ? hsp_clk_period ------------------------------------------------------------------------------- ? = tdicur 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_up_rd ? hsp_clk_period -------------------------------------------------------------------- ? = tdicdw 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_down_wr ? hsp_clk_period -------------------------------------------------------------------------------- - ? = tdicuw 1 2 -- - t hsp_clk ceil 2 disp#_if_clk_up_wr ? hsp_clk_period --------------------------------------------------------------------- - ? = tdrp t hsp_clk ceil disp#_read_en hsp_clk_period -------------------------------------------------- ? =
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 77 the disp#_if_clk_per_wr, disp#_if_clk_per_rd, hsp_clk_period, disp#_if_clk_down_wr, disp#_if_cl k_up_wr, disp#_if_clk_down_rd, disp#_if_clk_up_rd and disp#_read_en parameters are programmed via the di_disp#_time_conf_1, di_disp#_time_co nf_2 and di_hsp_clk_per registers. 4.3.16 memory stick host controller (mshc) figure 64 , figure 65 , and figure 66 depict the mshc timings, and table 48 and table 49 list the timing parameters. figure 64. mshc_clk timing diagram figure 65. transfer operat ion timing diagram (serial) tsclkwh tsclkwl tsclkc tsclkr tsclkf mshc_sclk tsclkc mshc_sclk tbssu tbsh tdsu tdh mshc_bs mshc_data (output) tdd mshc_data (intput)
i.mx31/i.mx31l advance information, rev. 2.3 78 freescale semiconductor electrical characteristics figure 66. transfer operati on timing diagram (parallel) note the memory stick host controller is designed to meet the timing requirements per sony's memory stick pro format specifications document. tables in this section details the spec ifications requirements for parallel and serial modes, and not the i.mx31/i.mx31l timing. table 48. serial interf ace timing parameters 1 1 timing is guaranteed for nvcc from 2.7 through 3.1 v and up to a maximum overdrive nvcc of 3.3 v. see nvcc restrictions described in table 7, "operating ranges," on page 12 . signal parameter symbol standards unit min. max. mshc_sclk cycle tsclkc 50 ? ns h pulse length tsclkwh 15 ? ns l pulse length tsclkwl 15 ? ns rise time tsclkr ? 10 ns fall time tsclkf ? 10 ns mshc_bs setup time tbssu 5 ? ns hold time tbsh 5 ? ns mshc_data setup time tdsu 5 ? ns hold time tdh 5 ? ns output delay time tdd ? 15 ns tsclkc mshc_sclk tbssu tbsh tdsu tdh mshc_bs mshc_data (output) tdd mshc_data (intput)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 79 4.3.17 personal computer memory card international association (pcmcia) figure 67 and figure 68 depict the timings pertaining to the pcmcia module, each of which is an example of one clock of strobe set-up ti me and one clock of strobe hold time. table 50 lists the timing parameters. table 49. parallel interface timing parameters 1 1 timing is guaranteed for nvcc from 2.7 through 3.1 v and up to a maximum overdrive nvcc of 3.3 v. see nvcc restrictions described in table 7, "operating ranges," on page 12 . signal parameter symbol standards unit min max mshc_sclk cycle tsclkc 25 ? ns h pulse length tsclkwh 5 ? ns l pulse length tsclkwl 5 ? ns rise time tsclkr ? 10 ns fall time tsclkf ? 10 ns mshc_bs setup time tbssu 8 ? ns hold time tbsh 1 ? ns mshc_data setup time tdsu 8 ? ns hold time tdh 1 ? ns output delay time tdd ? 15 ns
i.mx31/i.mx31l advance information, rev. 2.3 80 freescale semiconductor electrical characteristics figure 67. write accesses timing diagram?psht=1, psst=1 hclk haddr addr 1 control control 1 hwdata data write 1 hready hresp okay okay okay a[25:0] addr 1 d[15:0] data write 1 wait reg reg oe/we/iord/iowr ce1/ce2 rw poe psst psht psl
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 81 figure 68. read a ccesses timing diagram?psht=1, psst=1 4.3.18 pwm electrical specifications this section describes the electrical information of the pwm. the pwm can be programmed to select one of three clock signals as its source frequency. the selected clock signal is passed through a prescaler before being input to the counter. the output is available at the pulse-width modulator output (pwmo) external pin. table 50. pcmcia write and read timing parameters symbol parameter min max unit psht pcmcia strobe hold time 0 63 clock psst pcmcia strobe set up time 1 63 clock psl pcmcia strobe length 1 128 clock hclk haddr addr 1 control control 1 rwdata data read 1 hready hresp okay okay okay a[25:0] addr 1 d[15:0] wait reg reg oe/we/iord/iowr ce1/ce2 rw poe psst psht psl
i.mx31/i.mx31l advance information, rev. 2.3 82 freescale semiconductor electrical characteristics 4.3.18.1 pwm timing figure 69 depicts the timing of the pwm, and table 51 lists the pwm timi ng characteristics. figure 69. pwm timing 4.3.19 sdhc electrical specifications this section describes the electr ical information of the sdhc. 4.3.19.1 sdhc timing figure 70 depicts the timings of the sdhc, and table 52 lists the timing parameters. table 51. pwm output timing parameters id parameter min max unit 1 system clk frequency 1 1 cl of pwmo = 30 pf 0 ipg_clk mhz 2a clock high time 12.29 ? ns 2b clock low time 9.91 ? ns 3a clock fall time ? 0.5 ns 3b clock rise time ? 0.5 ns 4a output delay time ? 9.37 ns 4b output setup time 8.71 ? ns 4a system clock 2a 1 pwm output 2b 3a 3b 4b
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 83 figure 70. sdhc timing diagram . 4.3.20 sim electrical specifications each sim card interface consist of a to tal of 12 pins (for 2 separate ports of 6 pins each. mostly one port with 5 pins is used). table 52. sdhc interface timing parameters id parameter symbol min max unit card input clock sd1 clock frequency (low speed) f pp 1 1 in low speed mode, card clock must be lower th an 400 khz, voltage ranges from 2.7 to 3.3 v. 0 400 khz clock frequency (sd/sdio full speed) f pp 2 2 in normal data transfer mode for sd/sdio card, clock frequency can be any value between 0 ? 25 mhz. 025mhz clock frequency (mmc full speed) f pp 3 3 in normal data transfer mode for mmc card, clock frequency can be any value between 0 ? 20 mhz. 020mhz clock frequency (identification mode) f od 4 4 in card identification mode, card clock must be 10 0 khz ~ 400 khz, voltage ranges from 2.7 to 3.3 v. 100 400 khz sd2 clock low time t wl 10 ? ns sd3 clock high time t wh 10 ? ns sd4 clock rise time t tlh ?10ns sd5 clock fall time t thl ?10ns sdhc output / card inputs cmd, dat (reference to clk) sd6 sdhc output delay t odl -6.5 3 ns sdhc input / card outputs cmd, dat (reference to clk) sd7 sdhc input setup t is ?18.5ns sd8 sdhc input hold t ih ? -11.5 ns sd1 sd5 sd7 sd4 sd8 cmd output from sdhc to card data[3:0] input to sdhc clk sd2 sd6 sd3 cmd data[3:0]
i.mx31/i.mx31l advance information, rev. 2.3 84 freescale semiconductor electrical characteristics the interface is meant to be used with synchronous sim cards. this means th at the sim module provides a clock for the sim card to use. the frequency of th is clock is normally 372 ti mes the data rate on the tx/rx pins, however sim module can work with clk equal to 16 times the data rate on tx/rx pins. there is no timing relationship between the clock a nd the data. the clock that the sim module provides to the aim card will be used by the sim card to recove r the clock from the data much like a standard uart. all six (or 5 in case bi directi onal txrx is used) of the pins fo r each half of the sim module are asynchronous to each other. there are no required timing relationshi ps between the signals in normal mode, but there are some in two specific cases: reset and power down sequences. 4.3.20.1 general timing requirements figure 71 shows the timing of the sim module, and figure 53 lists the timing parameters. figure 71. sim clock timing diagram 4.3.20.2 reset sequence 4.3.20.2.1 cards with internal reset the sequence of reset for this kind of sim cards is as follows (see figure 72 ): ? after powerup, the clock signal is enabled on sgclk (time t0) ? after 200 clock cycl es, rx must be high. ? the card must send a response on rx ac knowledging the reset between 400 and 40000 clock cycles after t0. table 53. sim timing specification?high drive strength num description symbol min max unit 1 sim clock frequency (clk) 1 1 50% duty cycle clock s freq 0.01 5 (some new cards may reach 10) mhz 2 sim clk rise time 2 2 with c = 50pf s rise ?20ns 3 sim clk fall time 3 3 with c = 50pf s fall ?20ns 4 sim input transition time (rx, simpd) s trans ?25ns clk srise sfall 1/sfreq
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 85 figure 72. internal-reset card reset sequence 4.3.20.2.2 cards with active low reset the sequence of reset for this ki nd of card is as follows (see figure 73 ): 1. after powerup, the clock signal is enabled on clk (time t0) 2. after 200 clock cycl es, rx must be high. 3. rst must remain low for at least 40000 clock cycl es after t0 (no response is to be received on rx during those 40000 clock cycles) 4. rst is set high (time t1) 5. rst must remain high for at least 40000 clock cycl es after t1 and a response must be received on rx between 400 and 40000 clock cycles after t1. figure 73. active-low-reset card reset sequence sven clk rx 2 t0 1 response 2 1 < 200 clock cycles < 40000 clock cycles 400 clock cycles < sven clk rx 2 t0 1 response rst t1 1 2 < 200 clock cycles < 40000 clock cycles 400 clock cycles < 3 3 3 400000 clock cycles <
i.mx31/i.mx31l advance information, rev. 2.3 86 freescale semiconductor electrical characteristics 4.3.20.3 power down sequence power down sequence for sim interface is as follows: 1. simpd port detects the removal of the sim card 2. rst goes low 3. clk goes low 4. tx goes low 5. ven goes low each of this steps is done in one ckil period (usua lly 32 khz). power down can be started because of a sim card removal detection or launched by the processor. figure 74 and table 54 show the usual timing requirements for this sequence, wi th fckil = ckil frequency value. figure 74. smartcard interface power down ac timing table 54. timing requirements for power down sequence num description symbol min max unit 1 sim reset to sim clock stop s rst2clk 0.9*1/fckil 0.8 s 2 sim reset to sim tx data low s rst2dat 1.8*1/fckil 1.2 s 3 sim reset to sim voltage enable low s rst2ven 2.7*1/fckil 1.8 s 4 sim presence detect to sim reset low s pd2rst 0.9*1/fckil 25 ns simpd rst clk data_tx sven srst2clk srst2dat srst2ven spd2rst
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 87 4.3.21 sjc electrical specifications this section details the electrical characteristics for the sjc module. figure 75 depicts the sjc test clock input timing. figure 76 depicts the sjc b oundary scan timing, figure 77 depicts the sjc test access port, figure 78 depicts the sjc trst timing, and table 55 lists the sjc timing parameters. figure 75. test clock input timing diagram figure 76. boundary scan (jtag) timing diagram tck (input) vm vm vih vil sj1 sj2 sj2 sj3 sj3 tck (input) data inputs data outputs data outputs data outputs vih vil input data valid output data valid output data valid sj4 sj5 sj6 sj7 sj6
i.mx31/i.mx31l advance information, rev. 2.3 88 freescale semiconductor electrical characteristics figure 77. test access port timing diagram figure 78. trst timing diagram table 55. sjc timing parameters id parameter all frequencies unit min max sj1 tck cycle time 100 1 ?ns sj2 tck clock pulse width measured at v m 2 40 ? ns sj3 tck rise and fall times ? 3 ns sj4 boundary scan input data set-up time 10 ? ns sj5 boundary scan input data hold time 50 ? ns sj6 tck low to output data valid ? 50 ns sj7 tck low to output high impedance ? 50 ns sj8 tms, tdi data set-up time 10 ? ns sj9 tms, tdi data hold time 50 ? ns sj10 tck low to tdo data valid ? 44 ns tck (input) tdi (input) tdo (output) tdo (output) tdo (output) vih vil input data valid output data valid output data valid tms sj8 sj9 sj10 sj11 sj10 tck (input) trst (input) sj13 sj12
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 89 4.3.22 ssi electrical specifications this section describes the electrical information of ssi. note the follow ing pertaining to timing information: ? all the timings for the ssi are given for a non-inverted serial cl ock polarity (tsc kp/rsckp = 0) and a non-inverted frame sync (tfsi /rfsi = 0). if the pol arity of the clock an d/or the frame sync have been inverted, all the ti ming remains valid by inverting th e clock signal stck/srck and/or the frame sync stfs/srfs shown in the tables and in the figures. ? all timings are on audmux signals when ssi is being used for data transfer. ? ?tx? and ?rx? refer to the transm it and receive sections of the ssi. ? for internal frame sync operation using external clock, the fs ti ming will be same as that of tx data (for example, during ac97 mode of operation). 4.3.22.1 ssi transmitter timing with internal clock figure 79 depicts the ssi transmitter t iming with internal clock, and table 56 lists the timing parameters. sj11 tck low to tdo high impedance ? 44 ns sj12 trst assert time 100 ? ns sj13 trst set-up time to tck low 40 ? ns 1 on cases where sdma tap is put in the chain, the max tck fre quency is limited by max ratio of 1:8 of sdma core frequency to tck limitation. this implies max frequency of 8.25 mhz (or 121.2 ns) for 66 mhz ipg clock. 2 v m - mid point voltage table 55. sjc timing parameters (continued) id parameter all frequencies unit min max
i.mx31/i.mx31l advance information, rev. 2.3 90 freescale semiconductor electrical characteristics figure 79. ssi transmitter with internal clock timing diagram ss19 ad1_txc ad1_txfs (bl) ad1_txfs (wl) ss1 ad1_txd ad1_rxd ss2 ss4 ss3 ss5 ss6 ss8 ss10 ss12 ss14 ss18 ss15 ss17 ss16 ss43 ss42 note: srxd input in synchronous mode only (output) (output) (output) (output) (input) ss19 dam1_t_clk dam1_t_fs (bl) dam1_t_fs (wl) ss1 dam1_txd dam1_rxd ss2 ss4 ss3 ss5 ss6 ss8 ss10 ss12 ss14 ss18 ss15 ss17 ss16 ss42 note: srxd input in synchronous mode only (output) (output) (output) (output) (input) ss43
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 91 table 56. ssi transmitter with in ternal clock timing parameters id parameter min max unit internal clock operation ss1 (tx/rx) ck clock period 81.4 ? ns ss2 (tx/rx) ck clock high period 36.0 ? ns ss3 (tx/rx) ck clock rise time ? 6 ns ss4 (tx/rx) ck clock low period 36.0 ? ns ss5 (tx/rx) ck clock fall time ? 6 ns ss6 (tx) ck high to fs (bl) high ? 15.0 ns ss8 (tx) ck high to fs (bl) low ? 15.0 ns ss10 (tx) ck high to fs (wl) high ? 15.0 ns ss12 (tx) ck high to fs (wl) low ? 15.0 ns ss14 (tx/rx) internal fs rise time ? 6 ns ss15 (tx/rx) internal fs fall time ? 6 ns ss16 (tx) ck high to stxd valid from high impedance ? 15.0 ns ss17 (tx) ck high to stxd high/low ? 15.0 ns ss18 (tx) ck high to stxd high impedance ? 15.0 ns ss19 stxd rise/fall time ? 6 ns synchronous internal clock operation ss42 srxd setup before (tx) ck falling 10.0 ? ns ss43 srxd hold after (tx) ck falling 0 ? ns ss52 loading ? 25 pf
i.mx31/i.mx31l advance information, rev. 2.3 92 freescale semiconductor electrical characteristics 4.3.22.2 ssi receiver timing with internal clock figure 80 depicts the ssi receiver timing with internal clock, and table 57 lists the timing parameters. figure 80. ssi receiver with internal clock timing diagram ss50 ss48 ad1_txc ad1_txfs (bl) ad1_txfs (wl) ad1_rxd ad1_rxc ss1 ss4 ss2 ss51 ss20 ss21 ss49 ss7 ss9 ss11 ss13 ss47 (output) (output) (output) (input) (output) ss3 ss5 ss50 ss48 dam1_t_clk dam1_t_fs (bl) dam1_t_fs (wl) dam1_rxd dam1_r_clk ss3 ss1 ss4 ss2 ss5 ss51 ss20 ss21 ss49 ss7 ss9 ss11 ss13 ss47 (output) (output) (output) (input) (output)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 93 table 57. ssi receiver with internal clock timing parameters id parameter min max unit internal clock operation ss1 (tx/rx) ck clock period 81.4 ? ns ss2 (tx/rx) ck clock high period 36.0 ? ns ss3 (tx/rx) ck clock rise time ? 6 ns ss4 (tx/rx) ck clock low period 36.0 ? ns ss5 (tx/rx) ck clock fall time ? 6 ns ss7 (rx) ck high to fs (bl) high ? 15.0 ns ss9 (rx) ck high to fs (bl) low ? 15.0 ns ss11 (rx) ck high to fs (wl) high ? 15.0 ns ss13 (rx) ck high to fs (wl) low ? 15.0 ns ss20 srxd setup time before (rx) ck low 10.0 ? ns ss21 srxd hold time after (rx) ck low 0 ? ns oversampling clock operation ss47 oversampling clock period 15.04 ? ns ss48 oversampling clock high period 6 ? ns ss49 oversampling clock rise time ? 3 ns ss50 oversampling clock low period 6 ? ns ss51 oversampling clock fall time ? 3 ns
i.mx31/i.mx31l advance information, rev. 2.3 94 freescale semiconductor electrical characteristics 4.3.22.3 ssi transmitter ti ming with external clock figure 81 depicts the ssi tran smitter timing with external clock, and table 58 lists the timing parameters. figure 81. ssi transmitter with external clock timing diagram ss45 ss33 ss24 ss26 ss25 ss23 ad1_txc ad1_txfs (bl) ad1_txfs (wl) ad1_txd ad1_rxd note: srxd input in synchronous mode only ss31 ss29 ss27 ss22 ss44 ss39 ss38 ss37 ss46 (input) (input) (input) (output) (input) ss45 ss33 ss24 ss26 ss25 ss23 dam1_t_clk dam1_t_fs (bl) dam1_t_fs (wl) dam1_txd dam1_rxd note: srxd in p ut in s y nchronous mode onl y ss31 ss29 ss27 ss22 ss44 ss39 ss38 ss37 ss46 (input) (input) (input) (output) (input)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 95 table 58. ssi transmitter with external clock timing parameters id parameter min max unit external clock operation ss22 (tx/rx) ck clock period 81.4 ? ns ss23 (tx/rx) ck clock high period 36.0 ? ns ss24 (tx/rx) ck clock rise time ? 6.0 ns ss25 (tx/rx) ck clock low period 36.0 ? ns ss26 (tx/rx) ck clock fall time ? 6.0 ns ss27 (tx) ck high to fs (bl) high ?10.0 15.0 ns ss29 (tx) ck high to fs (bl) low 10.0 ? ns ss31 (tx) ck high to fs (wl) high ?10.0 15.0 ns ss33 (tx) ck high to fs (wl) low 10.0 ? ns ss37 (tx) ck high to stxd valid from high impedance ? 15.0 ns ss38 (tx) ck high to stxd high/low ? 15.0 ns ss39 (tx) ck high to stxd high impedance ? 15.0 ns synchronous external clock operation ss44 srxd setup before (tx) ck falling 10.0 ? ns ss45 srxd hold after (tx) ck falling 2.0 ? ns ss46 srxd rise/fall time ? 6.0 ns
i.mx31/i.mx31l advance information, rev. 2.3 96 freescale semiconductor electrical characteristics 4.3.22.4 ssi receiver ti ming with external clock figure 82 depicts the ssi receiver timing with external clock, and table 59 lists the timing parameters. figure 82. ssi receiver with external clock timing diagram table 59. ssi receiver with external clock timing parameters id parameter min max unit external clock operation ss22 (tx/rx) ck clock period 81.4 ? ns ss23 (tx/rx) ck clock high period 36.0 ? ns ss24 (tx/rx) ck clock rise time ? 6.0 ns ss25 (tx/rx) ck clock low period 36.0 ? ns ss26 (tx/rx) ck clock fall time ? 6.0 ns ss24 ss34 ss35 ss30 ss28 ss26 ss25 ss23 ad1_txc ad1_txfs (bl) ad1_txfs (wl) ad1_rxd ss40 ss22 ss32 ss36 ss41 (input) (input) (input) (input) ss24 ss34 ss35 ss30 ss28 ss26 ss25 ss23 dam1_t_clk dam1_t_fs (bl) dam1_t_fs (wl) dam1_rxd ss40 ss22 ss32 ss36 ss41 (input) (input) (input) (input)
electrical characteristics i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 97 4.3.23 usb electrical specifications this section describes the electrical information of the usbotg port. the otg port supports both serial and parallel interfaces. the high speed (hs) interface is supported vi a the ulpi (ultra low pin count interface). figure 83 depicts the usb ulpi timing diagram, and table 60 lists the timing parameters. figure 83. usb ulpi interface timing diagram ss28 (rx) ck high to fs (bl) high -10.0 15.0 ns ss30 (rx) ck high to fs (bl) low 10.0 ? ns ss32 (rx) ck high to fs (wl) high -10.0 15.0 ns ss34 (rx) ck high to fs (wl) low 10.0 ? ns ss35 (tx/rx) external fs rise time ? 6.0 ns ss36 (tx/rx) external fs fall time ? 6.0 ns ss40 srxd setup time before (rx) ck low 10.0 ? ns ss41 srxd hold time after (rx) ck low 2.0 ? ns table 60. usb ulpi interface timing specification 1 1 timing parameters are given as viewed by transceiver side. parameter symbol min max units setup time (control in, 8-bit data in) t sc , t sd 6? ns hold time (control in, 8-bit data in) t hc , t hd 0 ? ns output delay (control out, 8-bit data out) t dc , t dd ?9 ns table 59. ssi receiver with external clock timing parameters (continued) id parameter min max unit clock control out (stp) data out control in (dir, nxt) data in t dd t dc t dc t sc t sd t hd t hc
i.mx31/i.mx31l advance information, rev. 2.3 98 freescale semiconductor package information and pinout 5 package information and pinout this section includes the following: ? pin/contact assignment information ? mechanical package drawing 5.1 mapbga production package 457 14 x 14 mm, 0.5 mm pitch see figure 84 for package drawings and dimensions of the production package.
package informat ion and pinout i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 99 5.1.1 production package outline drawing figure 84. production package: case 1581?0.5 mm pitch
i.mx31/i.mx31l advance information, rev. 2.3 100 freescale semiconductor package information and pinout 5.1.2 mapbga signal assignment figure 85. ball map?0.5 mm pitch 1234567891011121314151617181920212223242526 a gnd gnd sfs5 cspi2 _miso cspi2_ ss2 usbot g_dat a7 usbot g_dat a3 usbot g_nxt usb_ byp rxd1 dsr_d ce1 dsr_d te1 rxd2 ce_co ntrol key_r ow3 key_r ow7 key_c ol3 key_c ol7 tdo sjc_m od sven0 captu re gpio1_ 6 watch dog_r st gnd gnd a b gnd gnd stxd4 srxd 5 cspi2_ ss0 cspi2_ spi_r dy usbot g_dat a5 usbot g_dat a1 usbot g_dir usb_p wr cts1 dcd_d ce1 dcd_d te1 rts2 key_r ow1 key_r ow5 key_c ol1 key_c ol5 tck trstb srx0 sclk0 gpio1_ 1 gpio1_ 5 gnd gnd b c gnd gnd srxd4 sck4 stxd5 cspi2_ ss1 cspi2_ sclk usbot g_dat a4 usbot g_stp usb_o c dtr_d ce1 dtr_d te1 txd2 key_r ow2 key_c ol0 key_c ol4 rtck de srst0 gpio1 _2 boot_ mode1 boot_ mode3 clko gnd gnd gnd c d gnd cspi3_ mosi sck5 boot_ mode2 gnd boot_ mode4 d ecspi3_ sclk ata _ d i or cspi2_ mosi nvcc5 gnd gnd dvfs0 power _fail e fata_d mack ata _ c s1 sfs4 nvcc5 batt_ line usbot g_dat a6 usbot g_dat a0 txd1 ri_dc e1 dtr_d ce2 key_r ow0 key_r ow6 key_c ol6 tdi stx0 gpio1 _0 gpio1 _4 boot_ mode 0 gnd ckih gpio1_ 3 vstby f gpwmopc_r w cspi3_ miso cspi3_ spi_r dy nvcc5 usbot g_dat a2 usbot g_clk rts1 ri_dt e1 cts2 key_r ow4 key_c ol2 tms simpd 0 comp are nvcc1 nvcc1 dvfs1 vpg0 clkss g h pc_rs t pc_bv d1 ata _ r eset ata _ d i ow ckil por i2c_da t gpio3_ 1 h jpc_vs 1 pc_re ady iois16 ata_c s0 pc_po e qvcc1 qvcc1 nvcc8 nvcc8 qvcc nvcc6 nvcc6 nvcc9 vpg1 reset_ in i2c_cl k csi_vs ync csi_pix clk j k pc_cd 2 sd1_d ata 3 pc_p wron pc_bv d2 pc_vs 2 qvcc1 nvcc6 nvcc1 csi_h sync gpio3_ 0 csi_mc lk csi_d5 csi_d7 k lsd1_d ata 1 sd1_c md sd1_d ata 2 pc_wa it pc_cd 1 nvcc3 qvcc1 gnd qvcc qvcc qv cc qvcc nvcc4 nvcc4 csi_d8 cs i_d4 csi_d6 csi_d9 csi_d1 1 l musbh2 _data0 usbh2 _stp usbh2 _data1 sd1_d ata 0 sd1_c lk nvcc3 gnd gnd gnd gnd gnd gnd qvcc csi_d1 4 csi_d1 2 csi_d1 0 csi_d1 3 csi_d1 5 m nusbh2 _clk cspi1_ sclk cspi1_ spi_r dy usbh2 _nxt usbh2 _dir qvcc4 nvcc3 gnd gnd gnd gnd gnd nvcc7 sd_d_i fpshif t vsync 0 hsync drdy0 n pcspi1_ ss1 cspi1_ mosi cspi1_ ss0 cspi1_ ss2 cspi1_ miso nvcc1 0 nvcc1 0 gnd gnd gnd gnd gnd nvcc7 read lcs1 sd_d_ clk sd_d_i o lcs0 p r stxd3 sck3 srxd3 sfs3 srxd6 qvcc4 nvcc1 0 gnd gnd gnd gnd gnd nvcc7 d3_cl s par_rs contr ast write vsync 3 r t stxd6 sck6 sfs6 nfce nfwe qvcc4 nvcc1 0 gnd gnd sgnd mgnd ugnd nvcc7 ld4 ld2 ld0 ser_r s d3_rev t u nfrb nfwp nfcle d15 d11 qvcc4 qvcc ttm_p ad ld8 ld6 d3_spl ld1 u v nfale nfre d13 d9 d5 qvcc qvcc qvcc qvcc svcc mvcc uvcc gnd ld17 ld13 ld10 ld3 ld5 v w d14 d12 d7 d3 nvcc2 2 eb0 ld15 ld7 ld9 w y d10 d8 d1 ioqvd d nvcc2 2 nvcc2 2 nvcc2 2 nvcc2 2 nvcc2 2 nvcc2 2 nvcc2 2 nvcc2 1 nvcc2 1 nvcc2 1 nvcc2 nvcc2 nvcc2 nvcc2 m_gra nt eb1 ld11 ld12 y aa d6 d4 a4 nvcc2 2 sd31 sd28 sd27 sd23 sd21 sd18 sd16 sd13 sd9 sd7 sd5 sd3 sd2 dqm2 sdclk fvcc ld14 ld16 aa ab d2 d0 a6 a2 rw fgnd oe bclk ab ac ma10 gnd a11 fuse_v dd m_req uest gnd ac ad gnd gnd a12 a13 a8 a0 sdba0 sdqs3 sd29 sd25 sdqs2 sd17 sd15 sd12 sd8 sdqs0 sd4 sd0 dqm1 cas sdcke 0 cs3 ecb gnd gnd gnd ad ae gnd gnd a7 a3 sdba1 sd30 sd26 sd24 sd22 sd20 sd1 9 sdqs1 sd14 sd11 sd10 sd6 sd1 dqm3 dqm0 sdclk cs2 lba cs0 gnd gnd gnd ae af gnd gnd a9 a5 a1 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a10 ras sdwe sdcke 1 cs5 cs1 cs4 gnd gnd af 1234567891011121314151617181920212223242526
package informat ion and pinout i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 101 table 61 shows the device connection list for power and ground, alpha-sorted. table 61. 14 x 14 bga ground/power id by ball grid location gnd/pwr id ball location fgnd ab24 fuse_vdd ac24 fvcc aa24 gnd a1, a2, a25, a26, b1, b2, b25, b26, c1, c2, c24, c25, c26, d1, d25, e22, e24, f21, l12, m 11, m12, m13, m14, m15, m16, n12, n13, n14, n 15, n16, p12, p13, p14, p15, p16, r12, r13, r14, r15, r16, t12, t13, v17, ac2, ac26, ad1, ad2, ad24, ad25, ad26, ae1, ae2 , ae24, ae25, ae26, af 1, af2, af25, af26 ioqvdd y6 mgnd t15 mvcc v15 nvcc1 g19, g21, k18 nvcc2 y17, y18, y19, y20 nvcc3 l9, m9, n11 nvcc4 l18, l19 nvcc5 e5, f6, g7 nvcc6 j15, j16, k15 nvcc7 n18, p18, r18, t18 nvcc8 j12, j13 nvcc9 j17 nvcc10 p9, p11, r11, t11 nvcc21 y14, y15, y16 nvcc22 w7, y7, y8, y9, y10, y11, y12, y13, aa6 qvcc j14, l13, l14, l15, l16, m 18, u18, v10, v11, v12, v13 qvcc1 j10, j11, k9, l11 qvcc4 n9, r9, t9, u9 sgnd t14 svcc v14 uvcc v16 ugnd t16
i.mx31/i.mx31l advance information, rev. 2.3 102 freescale semiconductor package information and pinout table 62 shows the device connection list for signals only, alpha-sorted by signal identification. table 62. 14 x 14 bga signal id by ball grid location signal id ball location signal id ball location a0 ad6 ckil h21 a1 af5 clko c23 a10 af18 clkss g26 a11 ac3 compare g18 a12 ad3 contrast r24 a13 ad4 cs0 ae23 a14 af17 cs1 af23 a15 af16 cs2 ae21 a16 af15 cs3 ad22 a17 af14 cs4 af24 a18 af13 cs5 af22 a19 af12 csi_d10 m24 a2 ab5 csi_d11 l26 a20 af11 csi_d12 m21 a21 af10 csi_d13 m25 a22 af9 csi_d14 m20 a23 af8 csi_d15 m26 a24 af7 csi_d4 l21 a25 af6 csi_d5 k25 a3 ae4 csi_d6 l24 a4 aa3 csi_d7 k26 a5 af4 csi_d8 l20 a6 ab3 csi_d9 l25 a7 ae3 csi_hsync k20 a8 ad5 csi_mclk k24 a9 af3 csi_pixclk j26 ata_cs0 j6 csi_vsync j25 ata_cs1 f2 cspi1_miso p7 ata_dior e2 cspi1_mosi p2 ata_diow h6 cspi1_sclk n2 ata_dmack f1 cspi1_spi_rdy n3 ata _ r e s e t h3 cspi1_ss0 p3 batt_line f7 cspi1_ss1 p1 bclk ab26 cspi1_ss2 p6 boot_mode0 f20 cspi2_miso a4 boot_mode1 c21 cspi2_mosi e3 boot_mode2 d24 cspi2_sclk c7 boot_mode3 c22 cspi2_spi_rdy b6 boot_mode4 d26 cspi2_ss0 b5 capture a22 cspi2_ss1 c6 cas ad20 cspi2_ss2 a5 ce_control a14 cspi3_miso g3 ckih f24 cspi3_mosi d2
package informat ion and pinout i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 103 cspi3_sclk e1 gpio1_3 f25 cspi3_spi_rdy g6 gpio1_4 f19 cts1 b11 gpio1_5 (pwr rdy) b24 cts2 g13 gpio1_6 a23 d0 ab2 gpio3_0 k21 d1 y3 gpio3_1 h26 d10 y1 hsync n25 d11 u7 i2c_clk j24 d12 w2 i2c_dat h25 d13 v3 iois16 j3 d14 w1 key_col0 c15 d15 u6 key_col1 b17 d2 ab1 key_col2 g15 d3 w6 key_col3 a17 d3_cls r20 key_col4 c16 d3_rev t26 key_col5 b18 d3_spl u25 key_col6 f15 d4 aa2 key_col7 a18 d5 v7 key_row0 f13 d6 aa1 key_row1 b15 d7 w3 key_row2 c14 d8 y2 key_row3 a15 d9 v6 key_row4 g14 dcd_dce1 b12 key_row5 b16 dcd_dte1 b13 key_row6 f14 de c18 key_row7 a16 dqm0 ae19 l2pg see vpg1 dqm1 ad19 lba ae22 dqm2 aa20 lcs0 p26 dqm3 ae18 lcs1 p21 drdy0 n26 ld0 t24 dsr_dce1 a11 ld1 u26 dsr_dte1 a12 ld10 v24 dtr_dce1 c11 ld11 y25 dtr_dce2 f12 ld12 y26 dtr_dte1 c12 ld13 v21 dvfs0 e25 ld14 aa25 dvfs1 g24 ld15 w24 eb0 w21 ld16 aa26 eb1 y24 ld17 v20 ecb ad23 ld2 t21 fpshift n21 ld3 v25 gpio1_0 f18 ld4 t20 gpio1_1 b23 ld5 v26 gpio1_2 c20 ld6 u24 table 62. 14 x 14 bga signal id by ball grid location (continued) signal id ball location signal id ball location
i.mx31/i.mx31l advance information, rev. 2.3 104 freescale semiconductor package information and pinout ld7 w25 sck6 t2 ld8 u21 sclk0 b22 ld9 w26 sd_d_clk p24 m_grant y21 sd_d_i n20 m_request ac25 sd_d_io p25 ma10 ac1 sd0 ad18 mcupg see vpg0 sd1 ae17 nfale v1 sd1_clk m7 nfce t6 sd1_cmd l2 nfcle u3 sd1_data0 m6 nfrb u1 sd1_data1 l1 nfre v2 sd1_data2 l3 nfwe t7 sd1_data3 k2 nfwp u2 sd10 ae15 oe ab25 sd11 ae14 par_rs r21 sd12 ad14 pc_bvd1 h2 sd13 aa14 pc_bvd2 k6 sd14 ae13 pc_cd1 l7 sd15 ad13 pc_cd2 k1 sd16 aa13 pc_poe j7 sd17 ad12 pc_pwron k3 sd18 aa12 pc_ready j2 sd19 ae11 pc_rst h1 sd2 aa19 pc_rw g2 sd20 ae10 pc_vs1 j1 sd21 aa11 pc_vs2 k7 sd22 ae9 pc_wait l6 sd23 aa10 por h24 sd24 ae8 power_fail e26 sd25 ad10 pwmo g1 sd26 ae7 ras af19 sd27 aa9 read p20 sd28 aa8 reset_in j21 sd29 ad9 ri_dce1 f11 sd3 aa18 ri_dte1 g12 sd30 ae6 rtck c17 sd31 aa7 rts1 g11 sd4 ad17 rts2 b14 sd5 aa17 rw ab22 sd6 ae16 rxd1 a10 sd7 aa16 rxd2 a13 sd8 ad15 sck3 r2 sd9 aa15 sck4 c4 sdba0 ad7 sck5 d3 sdba1 ae5 table 62. 14 x 14 bga signal id by ball grid location (continued) signal id ball location signal id ball location
product documentation i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 105 6 product documentation this data sheet is labeled as a pa rticular type: product prev iew, advance informatio n, or technical data. definitions of these types are avai lable at: http://www.freescale.com. all related product documentation for th e i.mx31 and i.mx31l is located at http://www.freescale.com\imx. sdcke0 ad21 trstb b20 sdcke1 af21 ttm_pad u20 sdclk aa21 txd1 f10 sdclk ae20 txd2 c13 sdqs0 ad16 usb_byp a9 sdqs1 ae12 usb_oc c10 sdqs2 ad11 usb_pwr b10 sdqs3 ad8 usbh2_clk n1 sdwe af20 usbh2_data0 m1 ser_rs t25 usbh2_data1 m3 sfs3 r6 usbh2_dir n7 sfs4 f3 usbh2_nxt n6 sfs5 a3 usbh2_stp m2 sfs6 t3 usbotg_clk g10 simpd0 g17 usbotg_data0 f9 sjc_mod a20 usbotg_data1 b8 srst0 c19 usbotg_data2 g9 srx0 b21 usbotg_data3 a7 srxd3 r3 usbotg_data4 c8 srxd4 c3 usbotg_data5 b7 srxd5 b4 usbotg_data6 f8 srxd6 r7 usbotg_data7 a6 stx0 f17 usbotg_dir b9 stxd3 r1 usbotg_nxt a8 stxd4 b3 usbotg_stp c9 stxd5 c5 vpg0 g25 stxd6 t1 vpg1 j20 sven0 a21 vstby f26 tck b19 vsync0 n24 tdi f16 vsync3 r26 tdo a19 watchdog_rst a24 tms g16 write r25 table 62. 14 x 14 bga signal id by ball grid location (continued) signal id ball location signal id ball location
i.mx31/i.mx31l advance information, rev. 2.3 106 freescale semiconductor product documentation 6.1 revision history table 63 summarizes revisions to this docum ent since the release of rev. 2.1. table 63. revision history rev location revision 2.2 was figure 3, ?power-up sequence option 2,? on page 16 deleted figure 3, power-up sequence, option 2 removed ?option 1? from figure 2. 2.2 table 29, "weim bus timing parameters," on page 35 changed weim13/14 min/max parameter values. 2.2 table 27, "dpll specifications," on page 31 added pll output frequency range parameters. 2.2 table 52, "sdhc interface timing parameters," on page 83 revised maximum parameter values for sd7/8. 2.2 table 7, "operating ranges," on page 12 changed the following parameter values: ? core operating voltage ? pll/fpm operating voltage ? modified footnotes 2 and 6. 2.3 fig 67 write access timing and figure 68 read access timing diagrams changed rd/wr signal name to rw and inverted the rw waveforms. 2.3 ? figure 19, "cspi master mode timing diagram," on page 30 and figure 20, "cspi slave mode timing diagram," on page 30 ? table 26, "cspi interface timing parameters," on page 30 ? cspi timing diagrams redrawn to reference the proper clock edge for data. ? cspi interface timing parameters table?s signal name descriptions changed to match timing diagrams. ? cspi parameter cs9 changed from 5 to 6 ns. ? cs11 minimum value removed and footnote added. 2.3 table 7, "operating ranges," on page 12 added statement to ta b l e 7 operation conditions footnote 3 concerning real-time clock functionality in state-retention mode. 2.3 table 30, "ddr/sdr sdram read cycle timing parameters," on page 40 ddr/sdr read cycle timing: sd9 changed from 1.2 to 1.8 ns. 2.3 table 6, "thermal resistance data?14 14 mm package," on page 11 added table to data sheet. 2.3 throughout document minor changes throughout document, including: ? change heading name from power specifications to supply current specifications. ? changed reference to chapter 4 of the reference manual from signal description pin assignment table, to multiplexing table. ? relocated fusebox supply current parameters table.
product documentation i.mx31/i.mx31l advance information, rev. 2.3 freescale semiconductor 107
document number: mcimx31 rev. 2.3 03/2007 how to reach us: home page: www.freescale.com e-mail: support@freescale.com usa/europe or locations not listed: freescale semiconductor technical information center, ch370 1300 n. alma school road chandler, arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) support@freescale.com japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1-8-1, shimo-meguro, meguro-ku, tokyo 153-0064, japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor hong kong ltd. technical information center 2 dai king street tai po industrial estate tai po, n.t., hong kong +800 2666 8080 support.asia@freescale.com for literature requests only : freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1-800-521-6274 or 303-675-2140 fax: 303-675-2150 ldcforfreescalesemiconductor@hibbertgroup.com information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circui ts or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpos e, nor does freescale semiconductor assume any liability arising out of the application or use of any product or ci rcuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor dat a sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale? and the freescale logo are trademarks of freescale semiconductor, inc. arm, arm thumb, jazelle, and the arm powered logo are registered trademarks of arm limited. arm1136jf-s, arm11, embedded trace kit, em bedded trace macrocell, etm, embedded trace buffer, and etb are trademarks of arm limited. al l other product or service names are the property of their respective owners. java and all other java-based marks are trademarks or registered trademarks of sun microsystems, inc. in the u.s. and other countries. france telecom ? tdf ? groupe des ecoles des telecommunic ations turbo codes patents license. ? freescale semiconductor, inc. 2005, 2006, 2007. all rights reserved.


▲Up To Search▲   

 
Price & Availability of MCIMX31LVKN5

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X